

QUESTION 1

1.1	$\begin{aligned} A C & =\sqrt{(-5-3)^{2}+(-3-9)^{2}} \\ & =\sqrt{64+144} \\ & =\sqrt{208} \end{aligned}$	\checkmark substitution \checkmark simplification \checkmark answer
1.2	Midpoint is $\left(\frac{-5+3}{2} ; \frac{-3+9}{2}\right)$ $\mathrm{M}(-1 ; 3)$	\checkmark substitution \checkmark answer (2)
1.3	$m_{A C}=\frac{9+3}{3+5}=\frac{3}{2}$	\checkmark substitution \checkmark answer (2)
1.4	$\begin{aligned} & \therefore m_{B N}=-\frac{2}{3} \\ & y=-\frac{2}{3} x+c \end{aligned}$ Subst. (7; 2) : $\begin{aligned} & 2=-\frac{2}{3}(7)+c \\ & 2=\frac{-14}{3}+c \\ & c=\frac{20}{3} \\ & y=-\frac{2}{3} x+\frac{20}{3} \end{aligned}$	\checkmark gradient of BN \checkmark substitution of point \checkmark equation
1.5	$\begin{aligned} B N & =\sqrt{(7-1)^{2}+(2-6)^{2}} \\ & =\sqrt{36+16} \\ & =\sqrt{52} \end{aligned}$ Area $\triangle \mathrm{ABC}$ $\begin{align*} & =\frac{1}{2} \cdot \mathrm{AC} \cdot \mathrm{BN} \\ & =\frac{1}{2} \cdot \sqrt{208} \cdot \sqrt{52} \\ & =\frac{1}{2} \sqrt{10816} \\ & =52 \text { square units } \tag{4} \end{align*}$	\checkmark substitution \checkmark answer \checkmark substitution into area formula \checkmark answer

QUESTION 2

2.1	$\begin{aligned} r^{2} & =(3)^{2}+(-4)^{2} \\ & =25 \\ \therefore & x^{2}+y^{2}=25 \end{aligned}$	\checkmark subst (3;-4) \checkmark simplification \checkmark equation
2.2	radius $=5$ units. therefore $\mathrm{AB}=10$ units	\checkmark radius $\checkmark \mathrm{AB}=10$
2.3	$\begin{aligned} & (x-3)^{2}+(y+4)^{2}=10^{2} \\ & x^{2}-6 x+9+y^{2}+8 y+16=100 \\ & x^{2}-6 x+y^{2}+8 y-75=0 \end{aligned}$	\checkmark substitution \checkmark expansion \checkmark simplification
2.4	A is the image of B when B is rotated through an angle of 180° about the origin.	\checkmark rotation $\checkmark 180^{\circ}$ about the origin
2.5	$\begin{aligned} m_{A B} & =\frac{-4-0}{3-0} \\ & =-\frac{4}{3} \end{aligned}$	\checkmark substitution \checkmark answer
2.6	$m_{B C}=\frac{3}{4} \quad \ldots$ tangent \perp radius Substitute $(3 ;-4)$ $\begin{aligned} & -4=\frac{3}{4}(3)+c \\ & -4=\frac{9}{4}+c \\ & -16=9+4 c \\ & c=-\frac{25}{4} \\ & \therefore y=\frac{3}{4} x-\frac{25}{4} \end{aligned}$	\checkmark gradient of tangent \checkmark substitution \checkmark simplification \checkmark value of c \checkmark equation
2.7	Substitute $(k ; 1)$ into $y=\frac{3}{4} x-\frac{25}{4}$ $\begin{aligned} & 1=\frac{3}{4}(k)-\frac{25}{4} \\ & 4=3 k-25 \\ & 29=3 k \\ & k=\frac{29}{3} \end{aligned}$	\checkmark substitution \checkmark simplification \checkmark answer

QUESTION 3

3.3.1	The coordinates for the image of C are $\begin{align*} & \left(x \cos \left(60^{\circ}\right)-y \sin \left(60^{\circ}\right) ; y \cos \left(60^{\circ}\right)+x \sin \left(60^{\circ}\right)\right) \\ & =\left(x\left(\frac{1}{2}\right)-y\left(\frac{\sqrt{3}}{2}\right) ; y\left(\frac{1}{2}\right)+x\left(\frac{\sqrt{3}}{2}\right)\right) \\ & =\left(\frac{x}{2}-\frac{\sqrt{3} y}{2} ; \frac{y}{2}+\frac{\sqrt{3} x}{2}\right) \tag{5} \end{align*}$	\checkmark formula \checkmark substitution $\checkmark \checkmark$ special angle values \checkmark simplification
3.3.2	$\begin{aligned} & \left(\frac{x}{2}-\frac{\sqrt{3} y}{2} ; \frac{y}{2}+\frac{\sqrt{3} x}{2}\right) \\ & =\left(\frac{-6}{2}-\frac{4 \sqrt{3}}{2} ; \frac{4}{2}-\frac{6 \sqrt{3}}{2}\right) \\ & =(-3-2 \sqrt{3} ; 2-3 \sqrt{3}) \end{aligned}$	$\checkmark \checkmark$ substitution \checkmark answer

QUESTION 4

\(\left.$$
\begin{array}{|l|l|l|}\hline 4.1 .1 & \begin{array}{l}\frac{\left(\cos 30^{\circ}\right)\left(-\tan 30^{\circ}\right)\left(\sin 12^{\circ}\right)}{\left(-\tan 45^{\circ}\right)\left(\cos 258^{\circ}\right)} \\
=\frac{\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{\sqrt{3}}\right)\left(\sin 12^{\circ}\right)}{(-1)\left(-\cos 78^{\circ}\right)} \\
=\frac{\left(-\frac{1}{2}\right)\left(\sin 12^{\circ}\right)}{(-1)\left(-\sin 12^{\circ}\right)} \\
=-\frac{1}{2}\end{array}
$$ \& \checkmark \checkmark reduction

\checkmark special angle values

\checkmark-\cos 78\end{array}\right]\)| |
| ---: |
| 4.1 .2 |
| $\frac{\sin 2 x \cos x}{2 \sin x}-(-\tan x)(-\cos x)\left[-\sin \left(720^{\circ}+x\right)\right]$
 $=\frac{2 \sin x \cos x \cos x}{2 \sin x}+\left(\frac{\sin x}{\cos x}\right)(\cos x)(\sin x)$
 $=\cos ^{2} x+\sin { }^{2} x$
 $=1$ |

4.2	$\sin 15^{\circ}$ $=\sin \left(45^{\circ}-30^{\circ}\right)$ $=\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ}$ $=\left(\frac{1}{\sqrt{2}}\right)\left(\frac{\sqrt{3}}{2}\right)-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)$ $=\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}$ $=\frac{\sqrt{3}-1}{2 \sqrt{2}}$	\checkmark expansion
\checkmark special angle values		

QUESTION 5

QUESTION 6

6.1		f \checkmark shape \checkmark intercepts \checkmark turning points g \checkmark shape \checkmark intercepts \checkmark turning points
6.2	$\begin{aligned} & \cos 2 x=2 \sin x \\ & 1-2 \sin ^{2} x-2 \sin x=0 \\ & 2 \sin ^{2} x+2 \sin x-1=0 \\ & \sin x=\frac{-2 \pm \sqrt{4-4(2)(-1)}}{2(2)} \\ & \sin x=-1,366(\mathrm{n} / \mathrm{a}) \quad \text { or } \quad \sin x=0,366 \\ & \quad \therefore x=21.5^{\circ} \text { or } x=158,5^{\circ} \end{aligned}$	\checkmark identity \checkmark quadratic equation \checkmark use of quadratic formula \checkmark solutions for $\sin x$ $\checkmark \checkmark$ answer for x
6.3	$x=90^{\circ}$	\checkmark answer [13]

QUESTION 7

QUESTION 8

8.1	Median is 2	\checkmark answer
		(1)
8.2	Upper quartile is 5 Lower quartile is 1	\checkmark upper quartile \checkmark lower quartile
		(2)
8.3	Minimum value is 1 and maximum value is 51 .	\checkmark minimum and maximum \checkmark box \checkmark whisker
	$\begin{array}{lllllll}0 & 5 & 10 & 20 & 30 & 40 & 50\end{array}$	
8.4	The data is positively skewed, that is the data is skewed to the right. There is no left whisker. This implies that of the countries that won gold medals at least 25% of them won only one. The long whisker on the right shows that some countries, namely China and the USA, performed exceptionally well in the Olympics. One could say that these countries could be considered as outliers in this context.	\checkmark positively skewed \checkmark explanation about whiskers
		(2) [8]

QUESTION 9

9.3	CPI for January 2008 is estimated at 9\%.	\checkmark answer close to 9%
		[6]

QUESTION 10

10.1	NOTE that candidates are urged to make use of available technology. By using a calculator $\sigma_{n} \approx 1,69 \quad(1,68518 \ldots)$	$\checkmark \checkmark \checkmark$ answer
10.2	The standard deviation of 1,69 shows that there was a small variation in the maximum daily temperatures for the given period. This is confirmed by the fact that the range in the maximum temperatures is only $6^{\circ} \mathrm{C}$ for the period.	\checkmark small variation

QUESTION 11

11.1	AMOUNT SPENT ON AIRTIME (IN RANDS) 0 to less than 20 20 to less than 40 40 to less than 60 60 to less than 80 80 to less than 100 100 to less than 120	NUMBER OF TEENAGERS 19 46 54 30 8 3	CUMULATIVE FREQUENCY 19 65 119 149 157 160	$\checkmark \checkmark$ correct totals in cumulative frequency column

11.3	About 92 learners spent R50 or less on airtime.				\checkmark answer read off from ogive
11.4					\checkmark midpoint column
	Amount spent on airtime (in Rands)	Number of teenagers	Midpoint of interval	Teenagers \times midpoint	
	0 to less than 20	19	10	190	
	20 to less than 40	46	30	1380	\checkmark learners \times midpoint column
	40 to less than 60	54	50	2700	
	60 to less than 80	30	70	2100	
	80 to less than 100	8	90	720	
	100 to less than 120	3	110	330	
	Sum			7420	
	Mean $=\frac{7420}{160} \approx R 46,38$				$\checkmark \checkmark$ mean (4)
					TOTAL: 150

