

education

Department: Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

_ _ _ _ _ _ _ _ _ _ _

ADDITIONAL EXEMPLAR 2008

MEMORANDUM ------

MARKS: 150

• 1

This memorandum consists of 12 pages.

Please turn over

1.1	$AC = \sqrt{(-5-3)^2 + (-3-9)^2}$	✓ substitution
	$=\sqrt{64+144}$	\checkmark simplification
	$=\sqrt{208}$	✓ answer
1.2		(3)
1.2	Midpoint is $\left(\frac{-3+3}{2};\frac{-3+9}{2}\right)$	✓ answer
	M(-1:3)	(2)
1.3	$m_{AC} = \frac{9+3}{2} = \frac{3}{2}$	✓ substitution
	3+5 2	• answer (2)
		(-)
1.4	$m = -\frac{2}{2}$	✓ gradient of BN
	$\frac{1}{2}$	
	$y = -\frac{2}{2}x + c$	
	Subst. (7 ; 2) :	
	$2 = -\frac{2}{(7)} + c$	✓ substitution of point
	$2 = -\frac{1}{3}(7) + c$	
	$2 = \frac{-14}{2} + c$	
	3	
	$c = \frac{20}{3}$	
		Logustion
	$y = -\frac{2}{x} + \frac{20}{x}$	• equation
	3 3	(3)
15		✓ substitution
1.5	$BN = \sqrt{(7-1)^2} + (2-6)^2$	• substitution
	$=\sqrt{36+16}$,
	$=\sqrt{52}$	✓ answer
	Area ΔABC	
	$=\frac{1}{2}$.AC.BN	
		 substitution into area formula
	$= -\frac{1}{2} \sqrt{208} \sqrt{52}$	
	$=\frac{1}{2}\sqrt{10816}$	
	= 52 square units	✓answer (4)

1.6	Let α be the inclination of AC and β be the inclination of AB.	
	3	
	$m_{AC} = \frac{3}{2}$	
	$\therefore \tan \alpha = 1,5$	
	$\alpha \approx 56,30^{\circ}$	✓ 56,30°
	$m_{AB} = \frac{5}{12}$	
	$\frac{12}{\beta} \approx 22.61^{\circ}$	✓ 22,61°
	$p \sim 22,01$	
	$(A B - 56.2)^{\circ}$ 22.6° $(22.7)^{\circ}$	
	$AB = 50, 5 - 22, 0 \approx 55, 7$	$\checkmark \hat{CAB} = \alpha - \beta$
	OR	✓ 33,7°
	$\theta = \tan^{-1}\left(\frac{3}{2}\right) - \tan^{-1}\left(\frac{5}{12}\right)$	
	≈ 33,7°	
	OR	
	$AN = \sqrt{(5-1)^2 + (-3-6)^2}$	
	$=\sqrt{117}$	
	$\tan \theta = \frac{\sqrt{52}}{\sqrt{52}}$	
	$\sqrt{117}$	
	$\theta \approx 33,7^{\circ}$	(4) [18]
		[10]

2.1	$r^2 = (3)^2 + (-4)^2$	✓ subst (3 ; - 4)
	= 25	✓ simplification
	$\therefore x^2 + y^2 = 25$	✓ equation
		(3)
2.2	radius = 5 units.	✓ radius
	therefore $AB = 10$ units	\checkmark AB = 10 (2)
2.3	$(x-3)^2 + (y+4)^2 = 10^2$	✓ substitution
	$x^{2}-6x+9+y^{2}+8y+16=100$	✓ expansion
	$r^{2} - 6r + v^{2} + 8v - 75 = 0$	\checkmark simplification
	x = 0x + y + 0y + 0 = 0	(3)
2.4	A is the image of B when B is rotated through an angle of	✓ rotation
	180° about the origin.	✓ 180° about the origin (2)
2.5	-4-0	(2)
	$m_{AB} = \frac{1}{3 - 0}$	✓ substitution
	$= -\frac{4}{-1}$	√ answer
	3	(2)
26	2	andiant of tangant
2.0	$m_{BC} = \frac{5}{4}$ tangent \perp radius	• gradient of tangent
	Substitute $(3; -4)$	
	$-4 = \frac{3}{2}(3) + c$	√ substitution
		• substitution
	$-4 = \frac{9}{4} + c$	
	4 + 16 - 0 + 4c	✓ simplification
	-10 = 9 + 4c	\checkmark value of c
	$c = -\frac{2S}{A}$	
	3 25	
	$\therefore y = \frac{5}{4}x - \frac{25}{4}$	✓ equation (5)
		(3)
2.7	Substitute (k; 1) into $y = \frac{3}{4}x - \frac{25}{4}$	
	4 4	\checkmark substitution
	$1 = \frac{3}{4}(k) - \frac{23}{4}$	
	4 = 3k - 25	✓ simplification
	29 = 3k	
	29	✓ answer
	$k = \frac{1}{3}$	(3)
		[20]

3.1.1	Reflection about the y-axis.	✓ reflection✓ y-axis
3.1.2	Translation 3 units to the left and 6 units upwards.	 ✓ translation ✓ 3 left and 6 upwards (2)
3.1.3	Rotation about the origin through 90° in an anticlockwise direction.	 ✓ rotation ✓ 90° (anticlockwise direction)
3.2.1	$(x;y) \to (2x;2y)$	\checkmark answer (1)
3.2.2 & 3.2.6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 3.2.2 ✓✓ correct coordinates (2) 3.2.6 ✓✓ correct coordinates (2)
3.2.3	$A'C' = 2\sqrt{5}$	$\checkmark \checkmark$ answer (2)
3.2.4	Area of $\Delta A' B' C' = 2^2 \times \text{Area of } \Delta ABC$	$\checkmark 2^2 \times \text{Area of } \Delta \text{ABC}$
	$= 4 \times \frac{5}{2}$ = 6 square units	✓ answer (2)
3.2.5	$A^{\prime\prime}(-1+8;-2) = (7;-2)$	✓ substitution ✓ answer (2)

3.3.1	The coordinates for the image of C are $(x\cos(60^\circ) - y\sin(60^\circ); y\cos(60^\circ) + x\sin(60^\circ))$	✓ formula
	$-\left(1\left(1\right), \sqrt{3}\right), \sqrt{1}, \sqrt{3}\right)$	✓ substitution
	$= \left(x\left(\frac{1}{2}\right) - y\left(\frac{1}{2}\right), y\left(\frac{1}{2}\right) + x\left(\frac{1}{2}\right) \right)$	\checkmark \checkmark special angle values
	$= \left(\frac{x}{2} - \frac{\sqrt{3}y}{2}; \frac{y}{2} + \frac{\sqrt{3}x}{2}\right)$	✓ simplification (5)
3.3.2	$\left(\frac{x}{2} - \frac{\sqrt{3}y}{2}; \frac{y}{2} + \frac{\sqrt{3}x}{2}\right)$	✓ ✓ substitution
	$= \left(\frac{-6}{2} - \frac{4\sqrt{3}}{2}; \frac{4}{2} - \frac{6\sqrt{3}}{2}\right)$ $= \left(-3 - 2\sqrt{3}; 2 - 3\sqrt{3}\right)$	✓answer (3)
		[25]

4.1.1	$\frac{(\cos 30^{\circ})(-\tan 30^{\circ})(\sin 12^{\circ})}{(-\tan 45^{\circ})(\cos 258^{\circ})}$	✓✓ reduction
	$= \frac{\left(\frac{\sqrt{3}}{2}\right)\left(-\frac{1}{\sqrt{3}}\right)(\sin 12^{\circ})}{(-1)(-\cos 78^{\circ})}$	 ✓ special angle values ✓ - cos 78
	$= \frac{\left(-\frac{1}{2}\right)(\sin 12^{\circ})}{(-1)(-\sin 12^{\circ})}$	✓ co-ratio
	$=-\frac{1}{2}$	✓ answer (6)
4.1.2	$\frac{\sin 2x \cos x}{2 \sin x} - (-\tan x)(-\cos x)[-\sin(720^\circ + x)]$	$\checkmark \checkmark \checkmark$ reduction formulae
	$=\frac{2\sin x \cos x \cos x}{2\sin x} + \left(\frac{\sin x}{\cos x}\right)(\cos x)(\sin x)$	✓✓✓ identities
	$= \cos^2 x + \sin^2 x$ $= 1$	✓ answer (7)

4.2	$\sin 15^\circ = \sin(45^\circ - 30^\circ)$	✓ (45° - 30°)
	$= \sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$	✓ expansion
	$-\left(\begin{array}{c}1\\-\end{array}\right)\left(\begin{array}{c}\sqrt{3}\\-\end{array}\right)-\left(\begin{array}{c}1\\-\end{array}\right)\left(\begin{array}{c}1\\-\end{array}\right)$	cxpansion
	$-\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)^{-}\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{2}\right)$	\checkmark special angle values
	$-\sqrt{3}$ 1	\checkmark simplification
	$-\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}$	•
	$=\frac{\sqrt{3}-1}{\sqrt{3}-1}$	(4)
	$2\sqrt{2}$	[17]

5.1.1		✓ sketch
	$\tan x = \frac{\sqrt{1-t}}{\sqrt{t}}$ $\sqrt{1-t}$ 1	✓ answer
	$\begin{array}{c} \hline & x \\ \hline & \sqrt{t} \end{array}$	(2)
5.1.2	$\sin 2x = 2\sin x \cos x$	✓ expansion
	$= 2 \left(\frac{\sqrt{1-t}}{1} \right) \left(\frac{\sqrt{t}}{1} \right)$	✓✓ substitution
	$-2\sqrt{t+t^2}$	✓answer
5.0.1	$= 2\sqrt{t-t}$	(4)
5.2.1	$LHS = \frac{\sin x \cos x}{1 + \frac{x^2}{2}}$	
	$1 - \sin^2 x + \cos^2 x$	
	$=\frac{\sin x \cos x}{2}$	✓ identity
	$\cos^2 x + \cos^2 x$	
	$=\frac{\sin x \cos x}{2}$	✓ adding terms
	$2\cos^2 x$	
	$=\frac{\sin x}{2\cos x}$	✓ simplification
	$=\frac{1}{2}\tan x$	✓identity (4)
5.2.2	$\frac{1}{2}\tan x = 0$	$\checkmark \frac{1}{2} \tan x = 0$
	$\tan x = 0$	✓ simplification
	$x = 0^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$	1 1 answar
		•• answer (4)
		[14]

7.1	$\frac{\sin M}{e} = \frac{\sin 150^{\circ}}{f}$ $\sin M = \frac{e \sin 30^{\circ}}{f}$ $= \frac{e}{2\epsilon}$	 ✓ using sin rule ✓ reduction ✓ special angle
	25	(3)
7.2.1	$\sin 55^\circ = \frac{50}{AC}$ $\therefore AC = \frac{50}{\sin 55^\circ}$	✓ ratio
	AC = 61m	✓answer
	$\sin 48^\circ = \frac{50}{AD}$	✓ ratio
	$\therefore AD = \frac{50}{\sin 48^{\circ}}$ $AD = 67,3m$	✓answer (4)
7.2.2	$CD^2 = AC^2 + AD^2 - 2AC.AD\cos 71^\circ$	✓ cosine rule
	$= (61)^{2} + (67,3)^{2} - 2(61)(67,3)\cos 71^{\circ}$ = 5577,18 CD = 74,68	✓ substitution✓ simplification✓ answer
		(5)
7.2.3	Area of $\triangle ACD = \frac{1}{2} AC.AD \sin 71^{\circ}$	✓ area rule
	$=\frac{1}{2}(61)(67,3)\sin 71^{\circ}$	\checkmark \checkmark substitution
	$=1940,82 m^2$	✓ answer (4)
		(4) [16]

8.1	Median is 2	✓ answer
		(1)
8.2	Upper quartile is 5	✓ upper quartile
	Lower quartile is 1	✓ lower quartile
		(2)
8.3	Minimum value is 1 and maximum value is 51.	\checkmark minimum and
	У	maximum
		. (hav
		 ✓ DOX ✓ whistor
	0 5 10 20 30 40 50	• WIIISKEI
		(3)
8.4	The data is positively skewed, that is the data is skewed to the	✓ positively skewed
	right. There is no left whisker. This implies that of the countries	1 5
	that won gold medals at least 25% of them won only one. The	\checkmark explanation about
	long whisker on the right shows that some countries, namely	whiskers
	China and the USA, performed exceptionally well in the	
	Olympics. One could say that these countries could be considered	
	as outliers in this context.	
		(2)
		[8]

11 NSC – Memorandum

9.3	CPI for January 2008 is estimated at 9%.	✓ answer	\checkmark answer close to	
		9%	(1)	
			[6]	

QUESTION 10

10.1	NOTE that candidates are urged to make use of available technology.		
	By using a calculator $\sigma_n \approx 1,69$ (1,68518)	✓✓✓ answer	(3)
10.2	The standard deviation of 1,69 shows that there was a small variation in the maximum daily temperatures for the given period. This is confirmed by the fact that the range in the maximum temperatures is only 6°C for the period.	\checkmark small variation	
			(1) [4]

11.1	AMOUNT SPENT ON	NUMBER OF	CUMULATIVE	
	AIRTIME (IN RANDS)	TEENAGERS	FREQUENCY	
	0 to less than 20	19	19	
	20 to less than 40	46	65	
	40 to less than 60	54	119	
	60 to less than 80	30	149	
	80 to less than 100	8	157	\checkmark correct totals in
	100 to less than 120	3	160	cumulative
				frequency column
				(2)

11.3	About 92 learners sper	✓ answer read off from ogive (1)			
11.4					
	Amount spent on airtime (in Rands) 0 to less than 20 20 to less than 40 40 to less than 60 60 to less than 80 80 to less than 100 100 to less than 120 Sum	Number of teenagers 19 46 54 30 8 3	Midpoint of interval 10 30 50 70 90 110	Teenagers × midpoint 190 1380 2700 2100 720 330 7420	 ✓ midpoint column ✓ learners × midpoint column
	Mean = $\frac{7420}{160} \approx R46,38$	✓✓ mean (4) [9] TOTAL: 150			