

education

Department: Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

.................

EXEMPLAR 2008

MEMORANDUM

This memorandum consists of 9 pages.

н

N

Please turn over

MEMORANDUM : GRADE 12, Exemplar PAPER 3,

QUE	STION ONE	
1.1	$T_1 = 5, T_2 = 8, T_3 = 11, T_4 = 14, T_5 = 17.$	$\checkmark \checkmark \checkmark$ calculating terms from formula (3)
1.2	Tn = 3n + 2	✓ calculating the coefficient of n ✓ calculating the value of the constant. (2)
		[5]
<u>QUE</u>	STION TWO	
2.1	Average $=\frac{61}{3}$ $= 20,33$	✓answer (1)
2.2	Since it is not an every day occurrence that 20 people will die in a train collision, the average is skewed from $\frac{41}{3} = 13,67$ to $\frac{61}{3} = 20,33$.	✓ ✓ explanation (2)
2.3	No. The reporter stood at one spot for TWO hours. The sample that the report was based on was far too small to make any valid conclusions. The conclusion does not take into account the situation at other level crossings.	✓ no ✓ explanation (2) [5]
	OR Yes From his experience only 1 car stopped, hence his claim could be valid.	

NOTE: According to the National Curriculum Statement the solutions to data-handling problems should be done with the use of a calculator. The alternative to the calculator is to use the pen and paper method as indicated below.

QUE	STION THREE							
3.1								
5.1	Hourly earnin	gs Midpo of inter (x)	val	-		$rac{1}{2}$ otal $rac{1}{2}$		
	9,70 - < 9,9	9,80) 4	5		49		
	9,90 - <10,1	0 10,0	0 1	6		160		✓ midpoints of
	10,10 - <10,3	30 10,2	0 2	5		255		intervals
	10,30 - <10,5	50 10,4	0 3	0		312		✓ totals
	10,50 - <10,7	70 10,6	0 2	4		254,4		
		Sum				1030,4		✓sum
	$Mean = \frac{1030,4}{100} = R10,30$					✓ calculating the mean (4)		
3.2		Midpoint						\checkmark calculating the
	Percentages	of interval (x)	Frequency (f)	/ (x ·	$-\overline{x})$	$(x-\overline{x})^2$	$f \times (x - \overline{x})^2$	difference between midpoints and
	9,70-<9,90	9,80	5	-(),5	0,25	1,25	mean
	9,90-<10,10	10,00	16	-(),3	0,09	1,44	\checkmark calculating the
	10,10-<10,30	10,20	25	-(),1	0,01	0,25	squares of the difference
	10,30-<10,50	10,40	30	0	,1	0,01	0,3	between midpoints and
	10,50 - <10,70	10,60	24	0	,3	0,09	2,16	mean
						Sum	5,4	\checkmark calculating the
	Standard deviati	$on = \sqrt{\frac{5,4}{100}} =$	= 0,23					totals $\checkmark \checkmark$ calculating the standard deviation (5)
3.3	Yes, she is correct. The difference in the mean between men and women is only 5 cents and the difference between the standard deviation is 2 cents. \checkmark answer \checkmark explanation (2)							

✓✓ cumulative frequency

3.4

	· · · · · · · · · · · · · · · · · · ·	
Hourly earnings	Frequency	Cumulative
Hourry earnings	(f)	frequency
9,70-<9,90	5	5
9,90-<10,10	16	21
10,10-<10,30	25	46
10,30-<10,50	30	76
10,50-<10,70	24	100

Hourly earnings of men

OUES	STION FOUR	
<u>4.1</u>	<u>HONFOUR</u>	
	basis Maths or Acc) = P(pass Maths) + P(pass Acc) - P(pass Maths and Acc) = $0.4 + 0.6 - 0.3$	✓ formula
	= 0,7	✓ substitution of probabilities ✓ answer
	35 7	(3)
4.2.1	P(first one not defective) = $\frac{35}{40} = \frac{7}{8}$	√√answer (2)
		(2)
4.2.2	P(one defective and one not defective) = P(defective, not defective) + P(not defective, defective) = $\left(\frac{5}{40} \times \frac{35}{39}\right) + \left(\frac{35}{40} \times \frac{5}{39}\right)$	✓ sum of probabilities ✓ ✓ substitution of probabilities
	$=\frac{35}{156}=0,22$ (0,2243589)	
	156	✓answer (4)
	5 4 1	
4.2.3	P(defective and defective) = $\frac{5}{40} \times \frac{4}{39} = \frac{1}{78} = 0.01$ (0.012820)	✓✓ substitution of probabilities and product ✓ answer
		(3)
4.3.1	Any book in any position in $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 7! =$	✓ multiplication rule
	5040 different ways.	✓ answer (2)
4.3.2	The two books can be arranged in $2 \times 1 = 2$ different ways.	✓ multiplication rule – two
1.3.2	Consider these two books as a single entity. Now we need to	books
	arrange six objects. This can be done in $6 \times 5 \times 4 \times 3 \times 2 \times 1 =$ 6! = 720 different ways. Therefore the total arrangement of	✓ multiplication rule – six objects
	these books can take place in $2 \times 720 = 1440$ different ways.	✓answer (3)
		(3)
4.3.3	The Mathematics books can be arranged in $4 \times 3 \times 2 \times 1 = 4! = 24$ different ways. The Science books can be arranged in	✓ multiplication rule – 24 and 6
	$3 \times 2 \times 1 = 3! = 6$ different ways. The Mathematics books and the Science books can be arranged in $2 \times 1 = 2$ different ways.	✓ multiplication rule – two different subjects
	Therefore the total arrangement of these books can take place in $24 \times 6 \times 2= 288$ different ways.	✓answer (3)
		[20]

	NSC : Memorandum		
5.4	y = 30,6 + (2,97)(25000) = 104 850 ∴ Profit = R104 850.	✓ substituting 25 ✓ profit in rands	(2)
5.5	$s_y = \sqrt{\frac{\sum (y - \overline{y})^2}{n - 1}} = \sqrt{\frac{2400}{5}} = 21,908$		
	$s_x = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{246}{5}} = 7,0142$	$\checkmark \checkmark \checkmark calculating the $ value of r	(3)
	Using $b = r \frac{s_y}{s_x}$, we have $2,9674 = r \frac{21,908}{7,0142}$ r = 0,95		
5.6	There is strong positive correlation between the annual advertising expenditure and the annual profit of the company.		(2) 15]

QUESTION SIX

6.1.1	$3x + x + 2x = 180^{\circ}$ (angles on a straight line) $6x = 180^{\circ}$ $x = 30^{\circ}$	✓ $3x + x + 2x = 180^{\circ}$ ✓ reason ✓ answer	(3)
6.1.2	$\hat{B}_1 = 2x = 60^{\circ}$ $\hat{E} = 60^{\circ}$	$\checkmark \hat{B_1} = 2x = 60^{\circ}$	
	Now $\hat{E} = \hat{B}_1$ \therefore AC is a tangent (angle between line and chord = angle in alternate segment)	✓ reason	(2)

Mathematics Paper 3	- 9 - NSC : Memorandum	Grade 12 Exempl	ar 2008
6.2.1 A clock has 12 sectors ($\checkmark 12 \alpha = 360^{\circ}$	
Now $12 \alpha = 360^{\circ}$		^	
$\therefore \alpha = 30^\circ \text{ at ce}$	entre	$\checkmark A \stackrel{\wedge}{O} D = 60 ^{\circ}$	(2)
$\therefore \hat{AOD} = 60^{\circ} (ar)$	ngle at the centre)	$\checkmark \dot{COB} = 3x$	
6.2.2 From 6.1 $\dot{COB} = 3\alpha$		$\checkmark C \hat{O} B = 3(30^\circ) = 90$	0
$\hat{COB} = 3(30^\circ) =$	= 90°		(2)
6.2.3 $C \stackrel{\wedge}{A} B = \frac{1}{2} (90^{\circ}) \dots (a)$	ngle at the centre)		
= 45°		✓ 45°	
$A\hat{C}D = \frac{1}{2}$ (60°)(an	gle at the centre)	✓ $A \stackrel{^{(1)}}{C} D = \frac{1}{2} (60^{\circ})$	
= 30°		✓ 75°	(3)
Now $\hat{E_1} = C \hat{A} B + A \hat{C} D$	(exterior angle of triangle)		[12]
= 75°			
QUESTION SEVEN			
7.1 $4t > 3t$			
4t + 1 > 3t - 1			
and $3t - 1 < 3t$		$\checkmark 4t + 1 > 3t > 3t - 1$	
$\therefore 4t+1 > 3t > 3t-1$		\checkmark DF is the longest sid	le
\therefore DF is the longest side			(2)
7.2 DF ² = $(4t + 1)^2 = 16t^2 + 8$	Bt + 1		
$EF^2 = (3t - 1) = 9t^2 - 6t + 1$		$\checkmark (4t+1)^2 = 16 t^2 + 8t$	6 T 1
$DE^2 = (3t)^2 = 9t^2$		(4l+1) = 10l + 8l	· +1
For ΔDEF to be right angled			
	$18t^2 - 6t + 1$ (Converse Pythagoras)	✓ Converse Pythagora ✓ $-2 t (t-7) = 0$	S
$-2t^2 + 1^2$		-2i(i-i)=0	
-2 t (t - 1)	7) = 0	$\checkmark t = 7$	
t = 0 (N / A);	,		(4)
			[6]

Mathematics Paper 3	- 10 - NSC : Memorandum	Grade 12 Exempla	r 2008
QUESTION EIGHT			
$A_2 = x \dots (FA = FB)$ $B_2 = x \dots (DAB = DBA)$ $D_1 = B_2 = x \dots (alterna)$	ween tan-chord theorem) A = 2x / tan-chord theorem ate angles, DC//FB) ponding angles, DC//FB / ext \angle theorem)	 ✓ one mark for each an ✓ ✓ ✓ ✓ ✓ ✓ 	(5)
8.2 $A_2 = D_1 = x \dots$ (from but these are angles subt \therefore ABED is cyclic		✓ $A_2 = D_1 = x$ ✓ reason	(2)
8.3 $B_3 = A_1 = x$ (angle Now ABE = $B_1 + B_2 + B_3 = 3x$ = 3DAE.	les in the same segment) B_3	$\checkmark B_3 = A_1 = x$ $\checkmark ABE = B_1 + B_2 + B_3$ $\checkmark 3x$	(2)
8.4 $D_1 = C = x$ $\therefore BD = CB \dots (Isos)$ but $BD = AD \dots (tan)$ $\therefore AD = BC$	sceles Triangle) agents from a common point)	$\checkmark D_1 = C = x$ $\checkmark BD = CB$ $\checkmark BD = AD$	(3) (3) [12]
QUESTION NINE			
9.1 $R_2 = R_3 = x$ (LRN $R_2 = P_1 = x$ (cor $R_3 = N_1 = x$ (alt Now RN = RP	l bisected) responding angles, RM//PN) ternate angles; RM//PN) (RM//PN; lines drawn parallel to)	$\checkmark R_2 = P_1 = x$ $\checkmark R_3 = N_1 = x$ $\checkmark RN = RP$ $\checkmark \frac{LR}{RP} = \frac{LM}{MN}$	(4)
	nate angles, KL//PN)	$\checkmark \mathbf{R}_2 = \mathbf{L}_1 = \mathbf{x}$ $\checkmark \mathbf{L}_1 = \mathbf{N}_1 = \mathbf{x}$	(2)
9.3 In Δ 's KLP, MRN $L_1 = R_3 = x \dots$ (from 9.1) $N_2 = P_2 \dots \dots$ (KLNP is LKP = RMN (Remain $\therefore \Delta$ KLP Δ MRN	s cyclic)	$\checkmark L_1 = R_3 = x$ $\checkmark N_2 = P_2$ $\checkmark LKP = RMN$	
			(3) [9]

TOTAL: 100 marks