

education

Department:

Education

REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

This memorandum consists of 9 pages.

MEMORANDUM : GRADE 12, Exemplar PAPER 3,

NOTE: According to the National Curriculum Statement the solutions to data-handling problems should be done with the use of a calculator. The alternative to the calculator is to use the pen and paper method as indicated below.

QUESTION THREE

3.1

Hourly earnings	Midpoint of interval (\boldsymbol{x})	Frequency (\boldsymbol{f})	Total $(\boldsymbol{f} \times \boldsymbol{x})$
$9,70-<9,90$	9,80	5	49
$9,90-<10,10$	10,00	16	160
$10,10-<10,30$	10,20	25	255
$10,30-<10,50$	10,40	30	312
$10,50-<10,70$	10,60	24	254,4
Sum			

$$
\text { Mean }=\frac{1030,4}{100}=R 10,30
$$

3.2

Percentages	Midpoint of interval (\boldsymbol{x})	Frequency (\boldsymbol{f})	$(x-\bar{x})$	$(x-\bar{x})^{2}$	$f \times$ $(x-\bar{x})^{2}$
$9,70-<9,90$	9,80	5	$-0,5$	0,25	1,25
$9,90-<10,10$	10,00	16	$-0,3$	0,09	1,44
$10,10-<10,30$	10,20	25	$-0,1$	0,01	0,25
$10,30-<10,50$	10,40	30	0,1	0,01	0,3
$10,50-<10,70$	10,60	24	0,3	0,09	2,16

Standard deviation $=\sqrt{\frac{5,4}{100}}=0,23$
3.3 Yes, she is correct. The difference in the mean between men and women is only 5 cents and the difference between the standard deviation is 2 cents.
\checkmark midpoints of
intervals
\checkmark totals

\checkmark sum

\checkmark calculating the
mean

\checkmark calculating the
difference
between
midpoints and
mean
\checkmark calculating the
squares of the
difference
between
midpoints and
mean
\checkmark calculating the
totals
$\checkmark \checkmark$ calculating
the standard
deviation
\checkmark answer
\checkmark explanation
(2)

QUESTION FOUR

4.1

$$
\begin{aligned}
\mathrm{P}(\text { pass Maths or Acc }) & =\mathrm{P}(\text { pass Maths })+\mathrm{P}(\text { pass Acc) })-\mathrm{P}(\text { pass Maths and Acc }) \\
& =0,4+0,6-0,3 \\
& =0,7
\end{aligned}
$$

4.2.1 $\quad \mathrm{P}($ first one not defective $)=\frac{35}{40}=\frac{7}{8}$
4.2.2 P (one defective and one not defective)
$=\mathrm{P}($ defective, not defective $)+\mathrm{P}($ not defective, defective $)$
$=\left(\frac{5}{40} \times \frac{35}{39}\right)+\left(\frac{35}{40} \times \frac{5}{39}\right)$
$=\frac{35}{156}=0,22$
4.2.3 $\quad \mathrm{P}($ defective and defective $)=\frac{5}{40} \times \frac{4}{39}=\frac{1}{78}=0.01 \quad(0.012820 .$.
4.3.1 Any book in any position in $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=7$! $=$ 5040 different ways.
4.3.2 The two books can be arranged in $2 \times 1=2$ different ways. Consider these two books as a single entity. Now we need to arrange six objects. This can be done in $6 \times 5 \times 4 \times 3 \times 2 \times 1=$ $6!=720$ different ways. Therefore the total arrangement of these books can take place in $2 \times 720=1440$ different ways.
4.3.3 The Mathematics books can be arranged in $4 \times 3 \times 2 \times 1=4$! $=$ 24 different ways. The Science books can be arranged in $3 \times 2 \times 1=3!=6$ different ways. The Mathematics books and the Science books can be arranged in $2 \times 1=2$ different ways. Therefore the total arrangement of these books can take place in $24 \times 6 \times 2=288$ different ways.
\checkmark formula
\checkmark substitution of probabilities
\checkmark answer
$\checkmark \checkmark$ answer
\checkmark sum of probabilities
$\checkmark \checkmark$ substitution of probabilities
\checkmark answer
$\checkmark \checkmark$ substitution of probabilities and product \checkmark answer
\checkmark multiplication rule
\checkmark answer
(2)
\checkmark multiplication rule - two books
\checkmark multiplication rule - six objects
\checkmark answer
\checkmark multiplication rule - 24 and 6
\checkmark multiplication rule - two different subjects
\checkmark answer

NOTE: According to the National Curriculum Statement the solutions to data-handling problems should be done with the use of a calculator. The alternative to the calculator is to use the pen and paper method as indicated below.

QUESTION FIVE

$5.1 \& 5.3$

5.2

	x	y	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$
	12	60	-8	-30	240	64	900
	14	70	-6	-20	120	36	400
	17	90	-3	0	0	9	0
	21	100	1	10	10	1	100
	26	100	6	10	60	36	100
	30	120	10	30	300	100	900
Sum	120	540	0	0	730	246	2400
Mean	20	90					

Consider the equation of the least squares line to be $\hat{y}=a+b x$
$b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}=\frac{730}{246}=2,97$
$(2,9674)$

Using $\hat{y}=a+b x$ and \bar{x} and \bar{y},
$90=a+(2,97)(20)$
$a=30,6$.
Therefore equation of line of least squares is $y=30,65+2,97 x$
$\checkmark \checkmark$ plotting points
\checkmark labels
(3)
\checkmark line of least squares
$\checkmark \checkmark$ calculating the value of b
$\checkmark \checkmark$ calculating the value of a

5.4		\checkmark substituting 25	
	$\begin{aligned} y & =30,6+(2,97)(25000) \\ & =104850 \\ \therefore & \text { Profit }=\text { R104 } 850 . \end{aligned}$	\checkmark profit in	(2)
5.5$s_{y}=\sqrt{\frac{\sum(y-\bar{y})^{2}}{n-1}}=\sqrt{\frac{2400}{5}}=21,9$			
	$s_{x}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{246}{5}}=7,0142$	$\checkmark \checkmark \checkmark$ calcu value of r	(3)
	Using $b=r \frac{s_{y}}{s_{x}}$, we have $2,9674=r \frac{21,908}{7,0142}$ $r=0,95$		
5.6	There is strong positive correlation between the annual advertising expenditure and the annual profit of the company.	\checkmark strong \checkmark positive	
			$\begin{array}{r} (2) \\ {[15]} \\ \hline \end{array}$

QUESTION SIX

6.1.1 $3 x+x+2 x=180^{\circ} \quad$ (angles on a straight line)
$6 x=180^{\circ}$
$x=30^{\circ}$
6.1.2 $\hat{B_{1}}=2 x=60^{\circ}$
$\hat{E}=60^{\circ}$
Now $\hat{E}=\hat{B_{1}}$
$\therefore \mathrm{AC}$ is a tangent
(angle between line and chord = angle in alternate segment)
$\checkmark 3 x+x+2 x=180^{\circ}$
\checkmark reason
\checkmark answer
$\checkmark \hat{B}_{1}=2 x=60^{\circ}$
\checkmark reason
(2)

$$
\begin{gathered}
\text { 6.2.1 A clock has } 12 \text { sectors (each say } \alpha) \\
\text { Now } 12 \alpha=360^{\circ} \\
\therefore \alpha=30^{\circ} \text { at centre } \\
\therefore \text { A } \hat{\mathrm{OD}}=60^{\circ}(\text { angle at the centre } \ldots)
\end{gathered}
$$

6.2.2 From 6.1 $\hat{\mathrm{COB}}=3 \alpha$

$$
\hat{\mathrm{COB}}=3\left(30^{\circ}\right)=90^{\circ}
$$

6.2.3 $\mathrm{C} \hat{\mathrm{A}} \mathrm{B}=1 / 2\left(90^{\circ}\right) \ldots \ldots($ angle at the centre \ldots.)

$$
=45^{\circ}
$$

$\mathrm{A} \hat{\mathrm{C} D}=\frac{1}{2}\left(60^{\circ}\right) \ldots \ldots($ angle at the centre \ldots.

$$
=30^{\circ}
$$

Now $\hat{E}_{1}=C \hat{A} B+A \hat{C} D \ldots$. . (exterior angle of triangle $\left.\ldots.\right)$

$$
=75^{\circ}
$$

QUESTION SEVEN

$7.1 \quad 4 t>3 t$

$$
4 t+1>3 t-1
$$

and $3 t-1<3 t$
$\therefore 4 t+1>3 t>3 t-1$
$\therefore \mathrm{DF}$ is the longest side
$7.2 \mathrm{DF}^{2}=(4 t+1)^{2}=16 t^{2}+8 t+1$
$E F^{2}=(3 t-1)=9 t^{2}-6 t+1$
$\mathrm{DE}^{2}=(3 t)^{2}=9 t^{2}$
For $\triangle \mathrm{DEF}$ to be right angled
We must have : $16 t^{2}+8 t+1=18 t^{2}-6 t+1$ (Converse Pythagoras)

$$
\begin{gathered}
-2 t^{2}+14 t=0 \\
-2 t(t-7)=0 \\
t=0(\mathrm{~N} / \mathrm{A}) ; \underline{t=7}
\end{gathered}
$$

$\checkmark 12 \alpha=360^{\circ}$
$\checkmark \mathrm{AOD}=60^{\circ}$
$\checkmark \mathrm{COB}=3 x$
$\checkmark \mathrm{COB}=3\left(30^{\circ}\right)=90^{\circ}$
$\checkmark 45^{\circ}$
$\checkmark \mathrm{A} \hat{\mathrm{C}} \mathrm{D}=1 / 2\left(60^{\circ}\right)$
$\checkmark 75^{\circ}$
(3)
[12]
$\checkmark 4 t+1>3 t>3 t-1$
\checkmark DF is the longest side
$\checkmark(4 t+1)^{2}=16 t^{2}+8 t+1$
\checkmark Converse Pythagoras
$\checkmark-2 t(t-7)=0$
$\checkmark t=7$
(4)
[6]

QUESTION EIGHT

8.1 $\mathrm{B}_{1}=x \ldots \ldots$ (angle between tan-chord theorem)
$\mathrm{A}_{2}=x \ldots . .(\mathrm{FA}=\mathrm{FB})$
$\mathrm{B}_{2}=x \ldots .(\mathrm{DAB}=\mathrm{DBA}=2 x /$ tan-chord theorem $)$
$\mathrm{D}_{1}=\mathrm{B}_{2}=x \ldots . .($ alternate angles, $\mathrm{DC} / / \mathrm{FB})$
$\mathrm{C}=\mathrm{B}_{1}=x \ldots . .($ corresponding angles, $\mathrm{DC} / / \mathrm{FB} /$ ext \angle theorem $)$
$8.2 \quad \mathrm{~A}_{2}=\mathrm{D}_{1}=x \ldots$. (from 8.1 above.)
but these are angles subtended by BE
\therefore ABED is cyclic
$8.3 \quad \mathrm{~B}_{3}=\mathrm{A}_{1}=x \ldots \ldots$. (angles in the same segment)
Now $A B E=B_{1}+B_{2}+B_{3}$

$$
\begin{aligned}
& =3 x \\
& =3 \mathrm{DAE}
\end{aligned}
$$

$8.4 \quad \mathrm{D}_{1}=\mathrm{C}=x$
$\therefore \mathrm{BD}=\mathrm{CB}$
........(Isosceles Triangle)
but $\mathrm{BD}=\mathrm{AD} \ldots \ldots$...(tangents from a common point)
$\therefore \mathrm{AD}=\mathrm{BC}$

QUESTION NINE

$9.1 \mathrm{R}_{2}=\mathrm{R}_{3}=x$ \qquad (LRN bisected)
$\mathrm{R}_{2}=\mathrm{P}_{1}=x \ldots \ldots \ldots$ (corresponding angles, $\mathrm{RM} / / \mathrm{PN}$)
$\mathrm{R}_{3}=\mathrm{N}_{1}=x \ldots \ldots \ldots$. . alternate angles; $\mathrm{RM} / / \mathrm{PN}$)
Now RN = RP
In Δ LNP $; \frac{L R}{R P}=\frac{L M}{M N} \ldots . .(\mathrm{RM} / / \mathrm{PN}$; lines drawn parallel to..)

$$
\begin{aligned}
& \text { But } \mathrm{RN}=\mathrm{RP} \\
& \frac{L R}{R N}=\frac{L M}{M N}
\end{aligned}
$$

$9.2 \mathrm{R}_{2}=\mathrm{L}_{1}=x \ldots \ldots . .($ alternate angles, $\mathrm{KL} / / \mathrm{PN})$
Now $\mathrm{L}_{1}=\mathrm{N}_{1}=x$
\therefore KLNP is cyclic(angles subtended by the same arc..)

$$
\checkmark \mathrm{A}_{2}=\mathrm{D}_{1}=x
$$

\checkmark one mark for each angle
\checkmark
\checkmark
\checkmark
\checkmark

$$
\begin{equation*}
\checkmark \text { reason } \tag{2}
\end{equation*}
$$

-

$\checkmark \mathrm{B}_{3}=\mathrm{A}_{1}=x$
$\checkmark \mathrm{ABE}=\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}$
$\checkmark 3 x$

$$
\begin{align*}
& \checkmark \mathrm{D}_{1}=\mathrm{C}=x \tag{3}\\
& \checkmark \mathrm{BD}=\mathrm{CB} \\
& \checkmark \mathrm{BD}=\mathrm{AD}
\end{align*}
$$

$\checkmark \mathrm{R}_{2}=\mathrm{P}_{1}=x$
$\checkmark \mathrm{R}_{3}=\mathrm{N}_{1}=x$
$\checkmark \mathrm{RN}=\mathrm{RP}$
$\checkmark \frac{L R}{R P}=\frac{L M}{M N}$
$\checkmark \mathrm{R}_{2}=\mathrm{L}_{1}=x$
$\checkmark \mathrm{L}_{1}=\mathrm{N}_{1}=x$

$$
\begin{aligned}
& \quad \\
& \checkmark \mathrm{L}_{1}=\mathrm{R}_{3}=x \\
& \checkmark \mathrm{~N}_{2}=\mathrm{P}_{2} \\
& \checkmark \mathrm{LKP}=\mathrm{RMN}
\end{aligned}
$$

9.3 In Δ 's KLP, MRN
$\mathrm{L}_{1}=\mathrm{R}_{3}=x \ldots .($ from 9.1)
$\mathrm{N}_{2}=\mathrm{P}_{2} \ldots \ldots \ldots$ (KLNP is cyclic)
LKP $=$ RMN \ldots. (Remaining angles)
$\therefore \Delta \mathrm{KLP}\|\| \mathrm{MRN}$

