

MARKS: 100

This memorandum consists of $\mathbf{1 1}$ pages.

QUESTION 3

3.1 $176-30=146$ and $176+30=206$. Therefore the interval between 146 seconds and 206 seconds lies between one standard deviation of the mean. For the normal distribution, approximately 68% of the data lies between one standard deviation of the mean.
\checkmark calculation
\checkmark one standard deviation $\checkmark 68 \%$
3.2 The middle 96% of the data for a normal distribution lies between 2 standard deviations on either side of the mean.
The lower limit will be $176-2(30)=116$ seconds.
The upper limit will be $176+2(30)=236$ seconds.
The middle 96% of the calls will be between 116 and 236 seconds.
3.3 Approximately 34% of the calls are between 146 and 176 seconds. Another 50% of the calls are in excess of 176 seconds. Therefore, in total, approximately 84% of the calls are in excess of 146 seconds.
(3)
$\checkmark 2$ standard deviations
\checkmark lower limit
\checkmark upper limit
(3)
$\checkmark 34 \%$ \& 50\%
\checkmark 84\%
(2)
[8]

QUESTION 4

4.1.1 Number of different ways in which these posts can be filled $=3 \times 4 \times 2=24$.
4.1.2 The post of clerk can only be filled by one person.

The number of different ways in which these three posts can be filled $=1 \times 4 \times 2=8$.
4.2.1 $\quad \mathrm{P}($ boy chosen first $)=\frac{20}{35}=\frac{4}{7}=0,57$.
4.2.2

4.2.3 $\mathrm{P}(\mathrm{b} ; \mathrm{g} ; \mathrm{b})=\frac{20}{35} \times \frac{15}{34} \times \frac{19}{33}=\frac{190}{1309}=0,15$
4.2.4 $\mathrm{P}(\mathrm{g} ; \mathrm{g} ; \mathrm{g})=\frac{15}{35} \times \frac{14}{34} \times \frac{13}{33}=\frac{13}{187}=0,07$
4.2.5 $\quad \mathrm{P}$ (at least one boy) $=1-\mathrm{P}$ (three girls chosen)

$$
=1-0,07
$$

$$
=0,93
$$

$\checkmark \checkmark$ multiplication rule
\checkmark answer
\checkmark one choice for clerk
\checkmark answer
$\checkmark \frac{20}{35}$
\checkmark answer
$\checkmark \checkmark$ tree diagram
$\checkmark \checkmark$ outcomes
(4)
$\checkmark \checkmark$ probabilities (without replacement)
\checkmark answer
\checkmark probabilities (without replacement)
\checkmark answer
$\checkmark \checkmark$ complementary rule
\checkmark answer
4.3 Since the teams work on the problem independently, the
probabilities that both teams will solve the problem $=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}=0,17$.

Now $\mathrm{P}($ problem will be solved $)=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}=\frac{2}{3}=0,67$
\checkmark independent events.
\checkmark probability both teams solve the problem
\checkmark probability rule
\checkmark answer

QUESTION 5

$5.1 \& 5.3$

5.2 By using a calculator : $a=161,24 \quad(161,2371188 \ldots)$

$$
b=26,88 \quad(26,88275499 \ldots)
$$

\therefore equation of line of least squares is $y=161,24+26,88 x$

$\checkmark \checkmark$ calculating the value of a
$\checkmark \checkmark$ calculating the value of b
(4)

NOTE: According to the National Curriculum Statement the solutions to data-handling problems should be done with the use of a calculator. The alternative to the calculator is to use the pen-and-paper method as indicated below. All answers have been rounded to two decimal places for ease of calculations.

ALTERNATIVE

	x	y	$(x-\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$
	3	270	$-10,75$	$-260,88$	2804,46	115,56	68058,37
	5	275	$-8,75$	$-255,88$	2238,95	76,56	65474,57
	8	376	$-5,75$	$-154,88$	890,56	33,06	23987,81
	12	420	$-1,75$	$-110,88$	194,04	3,06	12294,37
	15	602	1,25	71,13	88,91	1,56	5059,48
	19	684	5,25	153,13	803,93	27,56	23448,80
	22	800	8,25	269,13	2220,32	68,06	72430,96
	26	820	12,25	289,13	3541,84	150,06	83596,16
Sum	110	4247	0	0	12783,01	475,48	354350,52
Mean	13,75	530,875					

Consider the equation of the least squares line to be $\hat{y}=a+b x$
$b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}=\frac{12783,01}{475,48}=26,88$
$(26,88443257)$
Using $\hat{y}=a+b x$ and \bar{x} and \bar{y},
$530,875=a+(26,88443257)(13,75)$
$a=161,21$
(161,2140522)
Therefore equation of line of least squares is $y=161,21+26,88 x$
5.4 On 30 June, $x=0$.

Therefore approximately 161 patients were treated on 30 June.

ALTERNATIVE USING TABLE VALUES:

On 30 June, $x=0$.
Therefore approximately 161 patients were treated on 30 June.
5.5 On 24 July, $x=24$.
$\hat{y}=161,24+26,88(24)=806,36$
Approximately 806 patients were treated as at 24 July.

ALTERNATIVE USING TABLE VALUES:

$$
\begin{aligned}
y & =161,21+(26,88)(24) \\
& =806,33
\end{aligned}
$$

Approximately 806 patients were treated as at 24 July.
$\checkmark \checkmark$ calculating the value of b
$\checkmark \checkmark$ calculating the value of a
(4)
\checkmark substituting 0
\checkmark answer
(2)
\checkmark substituting 24
\checkmark answer
5.6 By using a calculator, $r=0,98 \quad(0,9847864966 \ldots)$

There is a very strong positive correlation between the number of days elapsed in July and the number of patients that were treated. This would suggest that there was a rapid spread of the influenza virus in the community.
$\checkmark \checkmark$ calculating the value of r
\checkmark interpretation

ALTERNATIVE USING TABLE VALUES:

$s_{y}=\sqrt{\frac{\sum(y-\bar{y})^{2}}{n}}=\sqrt{\frac{354350,52}{8}}=210,46$
$s_{x}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}=\sqrt{\frac{475,48}{8}}=7,71$
Using $b=r \frac{s_{y}}{s_{x}}$, we have $26,88=r \frac{210,46}{7,71}$
$r=0,98$
There is a very strong positive correlation between the number of days elapsed in July and the number of patients that were treated. This would suggest that there was a rapid spread of the influenza virus in the community.

QUESTION 6

6.1 equal to twice the angle at the circumference.
6.2.1

$$
\begin{array}{ll}
\hat{\mathrm{T}}=\hat{\mathrm{R}}_{1}=y & \ldots \ldots .(\mathrm{PR}=\mathrm{PT}) \\
\text { Now } \hat{\mathrm{P}}_{1}=2 y & \ldots .(\operatorname{ext} \angle \text { of triangle } \ldots .) \\
\text { and } \hat{\mathrm{O}}_{1}=2 \hat{\mathrm{P}}_{1} & \ldots . .(\text { angle at centre } \ldots . . .) \\
\text { i.e. } x=2(2 y)=4 y &
\end{array}
$$

6.2.2 (a)

From 6.2.1

$$
\begin{aligned}
& x=4 y=120^{\circ} \\
& \therefore y=30^{\circ}
\end{aligned}
$$

6.2.2 (b) Join Q to R and let $\mathrm{Q} \hat{\mathrm{R} O}=\hat{\mathrm{R}}_{3}$

$$
\begin{aligned}
& \hat{\mathrm{T}}=y=30^{\circ} \\
& \text { but } \mathrm{T} \hat{\mathrm{Q}} \mathrm{R}=\mathrm{T} \hat{\mathrm{R}} \mathrm{Q} \quad \ldots . .(\mathrm{TQ}=\mathrm{TR}, \text { isosceles triangle }) \\
& \mathrm{T} \hat{\mathrm{Q} R}=\mathrm{T} \hat{\mathrm{R}} \mathrm{Q}=\frac{180^{\circ}-30^{\circ}}{2}=75^{\circ}
\end{aligned}
$$

answer
$\checkmark \mathrm{PR}=\mathrm{PT}$
$\checkmark \hat{\mathrm{P}}_{1}=2 y$
\checkmark answer
(3)
$\checkmark \checkmark$ answer
(2)
\checkmark calculation

$$
\text { Now } \hat{\mathrm{R}}_{1}+\hat{\mathrm{R}}_{2}+\hat{\mathrm{R}}_{3}=75^{\circ}
$$

$$
\text { i.e. } \quad 30^{\circ}+\hat{\mathrm{R}}_{2}+30^{\circ}=75^{\circ}
$$

\checkmark substitution

$$
\begin{equation*}
\therefore \hat{\mathrm{R}}_{2}=15^{\circ} \tag{3}
\end{equation*}
$$

\checkmark answer

QUESTION 7

7.1

$$
\left.\begin{array}{ll}
\hat{\mathrm{P}}_{1}=\hat{\mathrm{Q}}_{1}=x & \ldots . .(\text { given }) \\
\text { and } \hat{\mathrm{P}}_{1}=\hat{\mathrm{R}}=x & \ldots \ldots . .(\text { tan }- \text { chord theorem }) \\
\text { Now } \hat{\mathrm{Q}}_{1}=\hat{\mathrm{R}}=x
\end{array} \quad \begin{array}{l}
\therefore \mathrm{TQ} \| \mathrm{SR}
\end{array} \quad \ldots \ldots \text { (corresponding angles are equal) }\right) ~ l
$$

$\checkmark \hat{\mathrm{P}}_{1}=\hat{\mathrm{Q}}_{1}=x$
$\checkmark \hat{\mathrm{P}}_{1}=\hat{\mathrm{R}}=x$
\checkmark reason
\checkmark reason
(4)
7.2

$$
\begin{array}{ll}
\hat{\mathrm{P}}_{1}=\hat{\mathrm{S}}_{1}=x & \ldots \ldots . .(\mathrm{TS}=\mathrm{SP}, \text { tangents from a common point }) \\
\therefore \hat{\mathrm{Q}}_{1}=\hat{\mathrm{S}}_{1} & \ldots \ldots . .(\text { both }=x)
\end{array}
$$

But these are angles subtended by the same line segment TP
\therefore QPTS is a cyclic quadrilateral
7.3
$\hat{\mathrm{P}}_{1}=\hat{\mathrm{Q}}_{1}=x$
......(given)
$\hat{\mathrm{P}}_{1}=\hat{\mathrm{Q}}_{2}=x$
.......(QPTS is a cyclic quad -
angles subtended by same chord.)
$\therefore \hat{\mathrm{Q}}_{1}=\hat{\mathrm{Q}}_{2}$
\therefore TQ bisects $\mathrm{S} \hat{\mathrm{Q} P}$.
$\checkmark \hat{\mathrm{P}}_{1}=\hat{\mathrm{Q}}_{2}=x$
\checkmark reason
\checkmark conclusion

QUESTION 8

8.1 In $\triangle \mathrm{ABQ}$,

$$
\begin{aligned}
& \frac{\mathrm{BR}}{\mathrm{RA}}=\frac{\mathrm{BT}}{\mathrm{TQ}} \\
& \frac{1}{2}=\frac{k}{\mathrm{TQ}} \\
& \therefore \mathrm{TQ}=2 k
\end{aligned}
$$

8.2.1 $\operatorname{In} \Delta$ CRT,

$$
\begin{aligned}
& \frac{\mathrm{CP}}{\mathrm{PR}}=\frac{5 k}{2 k} \quad \ldots .(\mathrm{RT} \| \mathrm{AQ}, \text { proportional intercept theorem }) \\
& \therefore \frac{\mathrm{CP}}{\mathrm{PR}}=\frac{5}{2}
\end{aligned}
$$

8.2.2

$$
\begin{aligned}
\frac{\text { Area } \Delta \mathrm{RCT}}{\text { Area } \triangle \mathrm{ABC}} & =\frac{\text { Area } \Delta \mathrm{RCT}}{\text { Area } \Delta \mathrm{BRC}} \times \frac{\text { Area } \triangle \mathrm{BRC}}{\text { Area } \triangle \mathrm{ABC}} \\
& =\frac{7}{8} \times \frac{1}{3} \\
& =\frac{7}{24}
\end{aligned}
$$

$$
\begin{aligned}
& \checkmark \text { ratio } \\
& \checkmark \text { reason } \\
& \checkmark \text { answer }
\end{aligned}
$$

\checkmark ratio of areas
$\checkmark \frac{7}{8}$
$\checkmark \frac{1}{3}$
$\checkmark \frac{7}{24}$

QUESTION 9

9.1 In $\Delta \mathrm{BPE}$ and $\Delta \mathrm{BDA}$
$\hat{\mathrm{B}}_{1}$ is common
$\hat{\mathrm{P}}_{2}=\hat{\mathrm{D}}=90^{\circ} \quad$...... (given perpendicular, \angle in a semi - circle)
$\mathrm{B} \hat{\mathrm{AD}}=\hat{\mathrm{E}}_{3}$
.......(remaining angles)
$\therefore \triangle \mathrm{BPE} / / / \triangle \mathrm{BDA}$ (equiangular)
$9.2 \quad \Delta \mathrm{BPE} / / / \triangle \mathrm{BDA}$
.......(from 9.1)
$\therefore \frac{\mathrm{BP}}{\mathrm{BD}}=\frac{\mathrm{PE}}{\mathrm{DA}} \quad \ldots . .($ sides in proportion $)$
$9.3 \quad \mathrm{AB}=\frac{\mathrm{BD} \cdot \mathrm{BE}}{\mathrm{BP}}$
$\mathrm{AB}^{2}=\frac{\mathrm{BD}^{2} \cdot \mathrm{BE}^{2}}{\mathrm{BP}^{2}}$
In $\triangle \mathrm{PBE} ; \mathrm{BE}^{2}=\mathrm{BP}^{2}+\mathrm{PE}^{2}$
.... (Theorem of Pythagoras)

$$
\begin{aligned}
& \mathrm{AB}^{2}=\frac{\mathrm{BD}^{2} \cdot\left(\mathrm{BP}^{2}+\mathrm{PE}^{2}\right)}{\mathrm{BP}^{2}} \\
& \mathrm{AB}^{2}=\frac{\mathrm{BD}^{2} \cdot \mathrm{BP}^{2}}{\mathrm{BP}^{2}}+\frac{\mathrm{BD}^{2} \cdot \mathrm{PE}^{2}}{\mathrm{BP}^{2}} \\
& \mathrm{AB}^{2}=\mathrm{BD}^{2}+\frac{\mathrm{BD}^{2} \cdot \mathrm{PE}^{2}}{\mathrm{BP}^{2}}
\end{aligned}
$$

$$
\begin{array}{ll}
\checkmark & \hat{\mathrm{B}}_{1} \text { is common } \\
\checkmark & \hat{\mathrm{P}}_{2}=\hat{\mathrm{D}}=90^{\circ} \\
\checkmark & \mathrm{BA} \mathrm{D}=\hat{\mathrm{E}}_{3}
\end{array}
$$

\checkmark similar triangles \checkmark reason
\checkmark changing the subject of the formula
\checkmark squaring
$\checkmark \mathrm{PB}^{2}=\mathrm{BE}^{2}-\mathrm{PE}^{2}$
\checkmark substitution
\checkmark simplification

