

education

Department: Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P3

..................

FEBRUARY/MARCH 2009

MEMORANDUM

MARKS: 100

u.

This memorandum consists of 11 pages.

Please turn over

QUES	TION 1		
1.1	33	× 22	
1.2	$T_{n+1} = T_n + 5$ and $T_1 = 3$	(1)	
		✓ ✓ formula in terms of <i>n</i> ✓ <i>T</i> . = 3	
		(3) [4]	
QUES	TION 2		
2.1	Yes. According to the bar chart, the total amount spent on workers salaries is R800 000 and the total amount spent on managers salaries is R400 000, hence twice the amount.	✓ yes	
2.2.	No. The total amount paid to workers is the highest of the three categories. This is expected taking into account the high number of workers in this company. The bar chart does not show the	✓ reason (2)✓ no	
	individual salaries are taken into account, a low percentage increase for workers will not reduce the gap in salaries. To the contrary, it will widen the gap.	\checkmark reason (2)	
2.3 2.4	$Mean = \frac{R800000}{200} = R4000$	✓ R800 000 ✓ answer (2)	
	Mean monthly salary paid to different category of employee	✓ answer (2) ✓ labels and heading ✓ ✓ ✓ height of bars (4)	
	Category of employee	[10]	

QUESTION 3		
3.1 $176 - 30 = 146$ and $176 + 30 = 206$. Therefore the interval between 146 seconds and 206 seconds lies between one standard deviation of the mean. For the normal distribution, approximately 68% of the data lies between one standard deviation of the mean.	 ✓ calculation ✓ one standard deviation ✓ 68% 	(3)
 3.2 The middle 96% of the data for a normal distribution lies between 2 standard deviations on either side of the mean. The lower limit will be 176 - 2(30) = 116 seconds. The upper limit will be 176 + 2(30) = 236 seconds. The middle 96% of the calls will be between 116 and 236 seconds. 3.3 Approximately 34% of the calls are between 146 and 176 seconds. Another 50% of the calls are in excess of 176 seconds. Therefore, in total, approximately 84% of the calls are in excess of 146 seconds. 	 ✓ 2 standard deviations ✓ lower limit ✓ upper limit ✓ 34% & 50% ✓ 84% 	(3) (2) [8]

Mathematics/P3

QUES	STION 4		
4.1.1	Number of different ways in which these posts can be filled $= 3 \times 4 \times 2 = 24$.	✓ ✓ multiplication rule ✓ answer	
4.1.2	The post of clerk can only be filled by one person.	√one choice for clerk ((3)
	The number of different ways in which these three posts can be filled = $1 \times 4 \times 2 = 8$.	✓answer	(2)
4.2.1	P(boy chosen first) = $\frac{20}{35} = \frac{4}{7} = 0,57$.	$\checkmark \frac{20}{35}$	2)
		✓ answer	1)
4.2.2	Outcomes)
	_b (b; b; b)		
	, b <		
	g (b; b;g)		
	/ b _ b (b; g; b)		
	g		
er	g (b;g;g)	((true discussion	
Ceach		• • tree diagram	
L	b (g; b; b)	✓ ✓ outcomes ((4)
	g (g; b;g)		
	b (g; g; b)		
	`g		
	` g (g;g;g)		
4.2.3	P(b; g; b) = $\frac{20}{35} \times \frac{15}{34} \times \frac{19}{33} = \frac{190}{1309} = 0,15$	✓ ✓ probabilities (without replacement) ✓ answer	(3)
		v probabilities (without	-)
4.2.4	P(g;g;g) = $\frac{15}{35} \times \frac{14}{34} \times \frac{13}{33} = \frac{13}{187} = 0,07$	replacement) ✓ answer ((2)
4.2.5	P(at least one boy) = $1 - P(\text{three girls chosen})$ = $1 - 0.07$	✓✓ complementary rule ✓ answer (2	3)

Copyright reserved

Please turn over

5

	NSC – Memorandum		
4.3	Since the teams work on the problem independently, the probabilities that both teams will solve the problem $=\frac{1}{2} \times \frac{1}{3} = \frac{1}{6} = 0,17.$	 ✓ independent events. ✓ probability both teams solve the problem 	
	Now P(problem will be solved) = $\frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{2}{3} = 0,67$	✓ probability rule ✓ answer (4 [22	-) 2]

NOTE	E: Ac data The as in place	cording -handlin alternat dicated es for ea	to the N ng proble ive to the below. A nse of cal	ational Cu ms should calculato All answer culations.	rriculum Stateme be done with the r is to use the per s have been roun	ent the solue the use of a c n-and-pape ded to two	utions to calculator. er method decimal	
ALTE	RNA	TIVE						
	x	у	$(x-\overline{x})$	$(y-\overline{y})$	$(x-\overline{x})(y-\overline{y})$	$(x-\overline{x})^2$	$(y-\overline{y})^2$	
	3	270	-10,75	-260,88	2804,46	115,56	68058,37	
	5	275	-8,75	-255,88	2238,95	76,56	65474,57	
	8	376	-5,75	-154,88	890,56	33,06	23987,81	
	12	420	-1,75	-110,88	194,04	3,06	12294,37	
	15	602	1,25	71,13	88,91	1,56	5059,48	
	19	684 800	5,25 8 25	153,13	803,93	27,56	23448,80	
	22	820	12 25	209,13	3541.84	150.06	83596.16	
Sum	110	4247	0	0	12783,01	475,48	354350,52	
Consider the equation of the least squares line to be $y = a + bx$ $b = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} = \frac{12783,01}{475,48} = 26,88$ (26,88443257) Using $\hat{y} = a + bx$ and \bar{x} and \bar{y} , 530,875 = $a + (26,88443257)(13,75)$ a = 161,21 (161,2140522) Therefore equation of line of least squares is $y = 161,21 + 26,88x$						✓ calculating the value of <i>b</i> ✓ calculating the value of <i>a</i> (4) ✓ substituting 0		
	Therefore approximately 161 patients were treated on 30 June. \checkmark answer ALTERNATIVE USING TABLE VALUES: On 30 June, $x = 0$. Therefore approximately 161 patients were treated on 30 June.(2)							
5.5	On 24 July, $x = 24$. $\hat{y} = 161,24 + 26,88(24) = 806,36$ Approximately 806 patients were treated as at 24 July. ALTERNATIVE USING TABLE VALUES: \checkmark substituting 24 \checkmark answer					✓ substituting 24 ✓ answer		
	y = 161,21 + (26,88)(24) = 806,33 Approximately 806 patients were treated as at 24 July.					(2)		

Mathematics/P3		7	DoE/Feb March 2009
5.6	By using a calculator, $r = 0.98$ There is a very strong positive days elapsed in July and the nu This would suggest that there virus in the community.	8 (0,9847864966) correlation between the number of umber of patients that were treated. was a rapid spread of the influenza	✓ ✓ calculating the value of r ✓ interpretation
	ALTERNATIVE USING TA	ABLE VALUES:	
	$s_{y} = \sqrt{\frac{\sum (y - \overline{y})^{2}}{n}} = \sqrt{\frac{354350}{8}}$ $s_{x} = \sqrt{\frac{\sum (x - \overline{x})^{2}}{n}} = \sqrt{\frac{475,48}{8}}$	$\frac{0,52}{2} = 210,46$ = 7,71	
	Using $b = r \frac{s_y}{s_x}$, we have 26,8 r = 0.98 There is a very strong positive days elapsed in July and the nu This would suggest that there you wirus in the community.	$8 = r \frac{210,46}{7,71}$ correlation between the number of umber of patients that were treated. was a rapid spread of the influenza	(3) [16]

QUESTION 6		
6.1 equal to twice the angle at the circumference.	✓ answer (1	I)
6.2.1 $\hat{T} = \hat{R}_1 = y$ (PR = PT)	✓ $PR = PT$	
Now $\hat{\mathbf{P}}_1 = 2y$ (ext \angle of triangle)	$\checkmark \hat{\mathbf{P}}_1 = 2y$	
and $\hat{O}_1 = 2\hat{P}_1$ (angle at centre)		
i.e. $x = 2(2y) = 4y$	✓ answer (3	3)
6.2.2 (a) From 6.2.1 $x = 4y = 120^{\circ}$	✓ ✓ answer	
$\therefore y = 30^{\circ}$	(2)	2)
6.2.2 (b) Join Q to R and let $Q \hat{R} O = \hat{R}_3$ $\hat{T} = y = 30^\circ$		
but $TQR = TRQ$ ($TQ = TR$, isosceles triangle)		
$T\hat{Q}R = T\hat{R}Q = \frac{180^{\circ} - 30^{\circ}}{2} = 75^{\circ}$	✓ calculation	
Now $\hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2 + \hat{\mathbf{R}}_3 = 75^\circ$		
i.e. $30^\circ + \hat{R}_2 + 30^\circ = 75^\circ$	✓ substitution	
$\therefore \hat{\mathbf{R}}_2 = 15^{\circ}$	\checkmark answer (3)	3) 9]

QUESTION 7	
7.1	
$\hat{\mathbf{P}}_1 = \hat{\mathbf{Q}}_1 = x$ (given) and $\hat{\mathbf{P}}_1 = \hat{\mathbf{R}} = x$ (tan - chord theorem)	$\checkmark \hat{\mathbf{P}}_1 = \hat{\mathbf{Q}}_1 = x$ $\checkmark \hat{\mathbf{P}}_1 = \hat{\mathbf{R}} = x$
Now $\hat{Q}_1 = \hat{R} = x$ \therefore TQ SR (corresponding angles a	are equal) \checkmark reason (4)
7.2	
$\hat{P}_1 = \hat{S}_1 = x \qquad \dots \dots (TS = SP, \text{ tangents from})$ $\therefore \hat{Q}_1 = \hat{S}_1 \qquad \dots \dots (both = x)$ But these are angles subtended by the same line set $\therefore \text{ QPTS is a cyclic quadrilateral}$	m a common point) gment TP $\checkmark \hat{P}_1 = \hat{S}_1 = x$ $\checkmark reason$ $\checkmark conclusion$ $\checkmark reason$ (4)
7.3 $\hat{P}_1 = \hat{Q}_1 = x$ (given) $\hat{P}_1 = \hat{Q}_2 = x$ (QPTS is a cyclic quad - angles subtended by sam $\hat{Q}_1 = \hat{Q}_2$	e chord.) $\checkmark \hat{P}_1 = \hat{Q}_2 = x$ $\checkmark \text{ reason}$
\therefore TQ bisects SQ P.	✓ conclusion (3) [11]

QUES	STION 8				
8.1	In Δ ABQ,				
	$\frac{BR}{RA} = \frac{BT}{TQ}$ $\frac{1}{2} = \frac{k}{TQ}$ $\therefore TQ = 2k$	(RT AQ, proportion	nal intercept theorem)	✓ statement & reason ✓ $\frac{1}{2} = \frac{k}{TQ}$ ✓ answer	(3)
8.2.1	In \triangle CRT, $\frac{CP}{PR} = \frac{5k}{2k}$ $\therefore \frac{CP}{PR} = \frac{5}{2}$	(RT AQ, proportional i	ntercept theorem)	 ✓ ratio ✓ reason ✓ answer 	(3)
8.2.2	$\frac{\text{Area}\Delta\text{RCT}}{\text{Area}\Delta\text{ABC}}$	$= \frac{\operatorname{Area} \Delta \operatorname{RCT}}{\operatorname{Area} \Delta \operatorname{BRC}} \times \frac{\operatorname{Area} \Delta \operatorname{BRC}}{\operatorname{Area} \Delta \operatorname{ABC}}$ $= \frac{7}{8} \times \frac{1}{3}$ $= \frac{7}{24}$	(the ratio of the areas of triangles having equal altitude)	✓ ratio of areas ✓ $\frac{7}{8}$ ✓ $\frac{1}{3}$ ✓ $\frac{7}{24}$	(4)
				<u> </u>	10]

QUESTION 9	
9.1 In \triangle BPE and \triangle BDA \hat{B}_1 is common $\hat{P}_2 = \hat{D} = 90^\circ$ (given perpendicular, $B\hat{A}D = \hat{E}_3$ (remaining angles) $\therefore \triangle BPE /// \triangle BDA$ (equiangular)	\angle in a semi - circle) $\checkmark \hat{B}_1 \text{ is common}$ $\checkmark \hat{P}_2 = \hat{D} = 90^\circ$ $\checkmark B\hat{A}D = \hat{E}_3$ (3)
9.2 $\Delta BPE /// \Delta BDA$ (from 9.1) $\therefore \frac{BP}{BD} = \frac{PE}{DA}$ (sides in proportion)	 ✓ similar triangles ✓ reason (2)
9.3 $AB = \frac{BD.BE}{BP}$ $AB^{2} = \frac{BD^{2}.BE^{2}}{BP^{2}}$ $In \Delta PBE; BE^{2} = BP^{2} + PE^{2} \qquad \dots \text{ (Theorem}$ $AB^{2} = \frac{BD^{2}.(BP^{2} + PE^{2})}{BP^{2}}$ $AB^{2} = \frac{BD^{2}.BP^{2}}{BP^{2}} + \frac{BD^{2}.PE^{2}}{BP^{2}}$ $AB^{2} = BD^{2} + \frac{BD^{2}.PE^{2}}{BP^{2}}$	<pre></pre>

TOTAL: 100