education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 100

This memorandum consists of 14 pages.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 1

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 2

Provided the argument is logical, we need to take heed of it.

2.1	Number required $=240$ learners	\checkmark answer
2.2	No. The sample of 240 learners indicates that the views of a substantial number of learners will be taken into account (20% of the sample). However, whilst this is the case, it is of paramount importance that the sample must be representative of all the learners at the school; otherwise the results of this survey will be invalid. Therefore the sample size alone does not guarantee a valid result from a survey.	\checkmark substantial number (20\%) \checkmark representative sample (or any other logical argument)
	OR	
	Yes. Sampling method according to Nandi's method.	
	Marks go for motivation of yes or no. If just answer yes or no, then $0 / 2$	
2.3	Yes.	\checkmark yes
	In Nandi's case the sample will definitely have learners from different grades. Therefore the views of learners from grades across the school will be taken into account. However, in	\checkmark answer
	Sam's method, there is no guarantee that learners from all grades will be selected. The sample in Sam's case could be biased towards a particular grade or learners of the same age.	(2)
	If only answer Yes, $1 / 2$	
2.4	In the composition of the sample no consideration was given to the number of boys and girls to be selected.	\checkmark any ONE answer
	Number of learners per grade.	(1) [6]
	Extra curricular participation	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 3

$3.1 \quad 100-15=85$ and $100+15=115$.

Therefore the interval between 85 and 115 lie within one standard deviation on either side of the mean. For the normal distribution, approximately 68% of the data lies within one standard deviation on either side of the mean.

Accept the answers from $66 \%-68 \%$ as a range You need to follow this through for the next questions.
3.2 The score of 115 lies at one standard deviation distance to the right of the mean. Approximately 34% of the data lies in this interval, (one standard deviation). The score of 130 lies at two standard deviations to the right of the mean. Approximately 48% of the data lies in this interval (two standard deviations). Therefore, 14% of the scores should lie between 115 and 130. This translates to 14% of the members of this gym being classified as fit.

If end up with 28% then $1 / 2$
Accept range from 14% to $14,2 \%$
3.3 The score of 130 lies at two standard deviations to the right of the mean. Approximately 48% of the members should fall into this interval.
\checkmark one standard deviation $\checkmark 68 \%$
\checkmark argument
$\checkmark 14 \%$
14%
(2)
$\checkmark 2 \%$ or $2,5 \%$
$\checkmark 10$ members
[6] 2% of $500=10$ members would be above 130 .

> If use $2,5 \%$ then the answer is 12,5 . Accept 12 or 13 members as the answer.
> If candidate leaves answer as 12,5 members then max 1 / 2

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 4

4.2 $\mathrm{P}(\mathrm{S} ;$ RW48hrs $)=\frac{80}{100} \times \frac{24}{100}=\frac{1920}{10000}=0,192=19,2 \%(0,19)$

OR

$$
\mathrm{P}(\mathrm{~S} ; \mathrm{RW} 48 \mathrm{hrs})=\frac{4}{5} \times \frac{6}{25}=\frac{24}{125}
$$

Penalty 1 for giving correct to 1 decimal place
Accept 0,19 and 0,192 or with more decimal places
4.3 $\quad \mathrm{P}($ stolen and not recovered $)=$
$\left(\frac{80}{100} \times \frac{60}{100}\right)+\left(\frac{20}{100} \times \frac{4}{100}\right)=0,488=48,8 \%$
OR
$\mathrm{P}($ stolen and not recovered $)=$

$$
\left(\frac{4}{5} \times \frac{3}{5}\right)+\left(\frac{1}{5} \times \frac{1}{25}\right)=\frac{12}{25}+\frac{1}{125}=\frac{61}{125}
$$

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 5

Age	20	21	22	27	29	32	39	40	42	47	50	59
Resting heart rate (beats per minute)	82	78	85	70	95	74	71	75	74	75	93	88

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 6

6.1.1	$\begin{array}{l\|l} \text { P(students receiving financial aid) } \\ =\frac{6101}{10730} & \begin{array}{l} \text { Answer only: Full } \\ \text { marks } \end{array} \end{array}$	$\frac{6101}{10730}$ \checkmark numerator \checkmark denominator
6.1.2	P (postgraduate not receiving financial aid)$\begin{aligned} & =\frac{731}{10370} \\ & =0,068 \end{aligned}$Answer only: Full marks Also accept: $\frac{731}{2610}$	$\frac{731}{10370}$ \checkmark denominator \checkmark numerator
6.1.3	P (undergraduate receiving financial aid) $\begin{aligned} & =\frac{4222}{10370} \\ & =0,39 \end{aligned}$ Answer only: Full marks Also accept: $\frac{4222}{8120}$	$\frac{4222}{10370}$ \checkmark numerator \checkmark denominator (2)
6.2	Let UG be the event of being an undergraduate and RF be the event of receiving financial aid. P (UG and RF) $\begin{aligned} & =\frac{4222}{10730} \\ & =0,39 \end{aligned}$ $\begin{aligned} & \mathrm{P}(\mathrm{UG}) \times \mathrm{P}(\mathrm{RF}) \\ & =\frac{8120}{10730} \times \frac{6101}{10730} \quad \text { OR }=0,76 \times 0,57 \\ & =0,43 \\ & \mathrm{P}(\mathrm{UG} \text { and } \mathrm{RF}) \neq \mathrm{P}(\mathrm{UG}) \times \mathrm{P}(\mathrm{RF}) \end{aligned}$ The event of being an undergraduate and receiving financial aid are NOT independent.	\checkmark P(UG and RF) $\begin{aligned} & \checkmark \frac{4222}{10730} \times \frac{6101}{10730} \\ & \checkmark \mathrm{P}(\mathrm{UG} \text { and } \mathrm{RF}) \neq \\ & \mathrm{P}(\mathrm{UG}) \times \mathrm{P}(\mathrm{RF}) \end{aligned}$ \checkmark conclusion

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 7

7.1	$\begin{aligned} & \text { Number of ways } \\ & =8 \times 8 \\ & =64 \end{aligned}$ If learner writes all the numbers out and then counts then, full marks Answer will be 11121314151617182122232425262728 31323334353637384142434445464748 51525354555657586162636465666768 71727374757677788182838485868788 64 ways to write a number	$\checkmark \checkmark$ answer (2) If candidate writes $8 \times 7: \quad 1 / 2$
7.2	Number of ways for a 4-digit number $\begin{aligned} & =8 \times 7 \times 6 \times 5 \\ & =1680 \end{aligned}$ OR Number of ways for a 4-digit number $\begin{aligned} & =\frac{8!}{(8-4)!} \\ & =\frac{8!}{4!} \\ & =1680 \end{aligned}$	\checkmark multiplication rule $\checkmark 8 \times 7 \times 6 \times 5$ \checkmark answer (3) $\begin{aligned} & \checkmark \checkmark \frac{8!}{(8-4)!} \text { or } \frac{8!}{4!} \\ & \checkmark 1680 \end{aligned}$
7.3	Numbers between 4000 and 5000 $\begin{aligned} & =1 \times 8 \times 8 \times 8 \\ & =512 \end{aligned}$ Answer only: 3 / 3 If leave answer as: $1 \times 8 \times 8 \times 8 \text { OR } 8 \times 8 \times 8: \quad 2 / 3$	$\begin{align*} & \checkmark 1 \\ & \checkmark 8^{3} \\ & \checkmark \text { answer } \tag{3} \end{align*}$

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 8

8.1	Construct OL and extend to J $\begin{array}{ll} \hat{\mathrm{L}}_{2}=\mathrm{LMO} & (\mathrm{MO}=\mathrm{OL}) \\ \hat{\mathrm{O}}_{2}=\mathrm{LM} \mathrm{O}+\hat{\mathrm{L}}_{2} & (\mathrm{ext} \angle \text { of } \Delta \mathrm{OML}) \\ \hat{\mathrm{O}}_{2}=2 \hat{\mathrm{~L}}_{2} & \end{array}$ Similarly $\hat{\mathrm{O}}_{1}=2 \hat{\mathrm{~L}}_{1}$ $\begin{aligned} & \hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=2 \hat{\mathrm{~L}}_{1}+2 \hat{\mathrm{~L}}_{2} \\ & \mathrm{KO} \mathrm{O}=2\left(\hat{\mathrm{~L}}_{1}+\hat{\mathrm{L}}_{2}\right) \\ & \mathrm{KOM}=2 \mathrm{~K} \hat{\mathrm{~L}} \mathrm{M} \end{aligned}$ If candidate writes: $\mathrm{KO} \mathrm{M}=2 \mathrm{~K} \hat{\mathrm{~L}} \mathrm{M}$ ($\angle \mathrm{circ}$ centre $=2 \angle$ at circumference): $0 / 6$ Note: Construction can be stated or drawn. OR Join M to K and O to L $\begin{array}{ll} \hat{\mathrm{L}}_{2}=\hat{\mathrm{M}}_{1}=x & (\mathrm{MO}=\mathrm{OL}) \\ \hat{\mathrm{K}}_{2}=\hat{\mathrm{M}}_{2}=y & (\mathrm{MO}=\mathrm{OK}) \\ \hat{\mathrm{K}}_{1}=\hat{\mathrm{L}}_{1}=z & (\mathrm{OL}=\mathrm{OK}) \\ \hat{\mathrm{O}}_{1}=180^{\circ}-2 y & (\angle \operatorname{sum} \Delta) \\ 2 y+2 z+2 x=180^{\circ} & (\angle \operatorname{sum} \Delta) \\ 2 z+2 x=180^{\circ}-2 y & \\ 2(z+x)=180^{\circ}-2 y & \\ 2\left(\hat{\mathrm{~L}}_{1}+\hat{\mathrm{L}}_{2}\right)=\mathrm{KO} \mathrm{M} & \\ \mathrm{~K} \hat{\mathrm{O} M}=2 \mathrm{~K} \hat{\mathrm{~L} M} & \end{array}$	\checkmark construction \checkmark S/R \checkmark S/R $\checkmark \hat{\mathrm{O}}_{1}=2 \hat{\mathrm{~L}}_{1}$ \checkmark $\hat{\mathrm{O}}_{1}+\hat{\mathrm{O}}_{2}=2 \hat{\mathrm{~L}}_{1}+2 \hat{\mathrm{~L}}_{2}$ $\mathrm{KÔM}=2\left(\hat{\mathrm{~L}}_{1}+\hat{\mathrm{L}}_{2}\right)$ (6)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

8.2.1	$\begin{aligned} & \hat{\mathrm{R}}_{1}=x \quad(\angle \text { 's opp }=\text { radii }) \\ & \hat{\mathrm{O}}_{1}=180^{\circ}-2 x(\angle \text { sum in } \triangle \mathrm{QRT}) \\ & \hat{\mathrm{P}}_{1}=90^{\circ}-x \quad(\angle \text { circle centre }=\text { twice } \angle \text { at circumference }) \end{aligned}$	\checkmark S/R $\checkmark \hat{\mathrm{O}}_{1}=180^{\circ}-2 x$ \checkmark S/R $\hat{P}_{1}=90^{\circ}-x$ (3)
8.2.2	$\begin{array}{ll} \hline \mathrm{PQ}=\mathrm{QR} & \text { (given) } \\ \mathrm{Q} \hat{R} \mathrm{P}=90^{\circ}-x & (\angle \mathrm{opp}=\operatorname{sides} \text { in } \Delta) \\ \mathrm{PQR}=2 x & (\angle \mathrm{sum} \text { in } \Delta \mathrm{PQR}) \\ x+\hat{\mathrm{Q}}_{2}=2 x & \\ \hat{\mathrm{Q}}_{2}=x & \end{array}$ $\begin{equation*} \text { TQ bisects } P \hat{Q} R \tag{3} \end{equation*}$	\checkmark S/R \checkmark Statement $\checkmark \hat{\mathrm{Q}}_{2}=x$
8.2.3	$\begin{aligned} & \mathrm{PQR}=2 x \\ & \hat{\mathrm{~S}}=180^{\circ}-2 x \quad \text { (opp } \angle \text { 's of cyclic quad are supplementary) } \\ & \hat{\mathrm{O}}_{1}=180^{\circ}-2 x \\ & \hat{\mathrm{O}}_{1}=\hat{\mathrm{S}} \\ & \text { STOR is a cyclic quadrilateral } \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \text { (converse }-\operatorname{ext} \angle \text { quad }=\text { int opp } \angle \text { int opp } \angle) \end{aligned}$	\checkmark S/R \checkmark Statement \checkmark Reason (3) [15]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 9

9.1	$\mathrm{BCA}=90^{\circ} \quad(\angle$'s in a semi-circle $)$	\checkmark answer (1)
9.2.1	$\begin{array}{rlrl} \mathrm{AC} & =\sqrt{10^{2}-8^{2}} & & \text { (Pythagoras) } \\ & =\sqrt{36} & & \\ & =6 & & \\ & & \tag{3}\\ \mathrm{AM} & =3 & & \\ & & & \text { (line from circle centre } \perp \text { chord bisects chord } \\ \text { OR midpoint theorem) } \end{array}$	$\begin{aligned} & \checkmark \text { diameter }=10 \\ & \checkmark \text { AC } \\ & \checkmark \text { AM } \end{aligned}$
9.2.2	$\begin{aligned} & \text { OM }=\sqrt{5^{2}-3^{2}} \quad \begin{array}{l} \text { (Pythagoras) } \\ \quad=4 \quad(\text { OR midpoint theorem }) \\ \text { Area } \triangle \mathrm{AOM}: \text { Area } \triangle \mathrm{ABC} \\ =\frac{1}{2} .4 .3: \frac{1}{2} .8 .6 \\ =6: 24 \\ =1: 4 \end{array} \end{aligned}$ OR Area $\triangle \mathrm{AOM}$: Area $\triangle \mathrm{ABC}$ $\begin{aligned} & =\frac{1}{2} \cdot \mathrm{AM} \cdot \mathrm{OM} \cdot \sin \mathrm{OA} \mathrm{M}: \frac{1}{2} \cdot \mathrm{AC} \cdot \mathrm{AB} \cdot \sin \mathrm{BA} \mathrm{C} \\ & =\frac{1}{2} \cdot 4 \cdot 3: \frac{1}{2} \cdot 8 \cdot 6 \\ & =6: 24 \end{aligned}$	\checkmark OM \checkmark substitution \checkmark answer (3)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 10

10.1.1	$\begin{array}{ll} \frac{\mathrm{AH}}{\mathrm{HE}}=\frac{2}{1} & (\mathrm{GHB} \\| \mathrm{FEC}) \\ \mathrm{AH}=2 y & \\ \mathrm{HE}=y & \\ \frac{\mathrm{AE}}{\mathrm{ED}}=\frac{2}{1} & (\mathrm{BE} \\| \mathrm{CD}) \\ \mathrm{ED}=1,5 y & \\ \frac{\mathrm{AH}}{\mathrm{ED}}=\frac{2}{1,5} & \\ \frac{\mathrm{AH}}{\mathrm{ED}}=\frac{4}{3} & \\ \hline \end{array}$	If learner stops at $2: 1,5$: no penalty	\checkmark statement \checkmark reason $\checkmark \mathrm{ED}=1,5 y$ \checkmark answer
10.1.2	$\begin{align*} \frac{B E}{C D} & =\frac{4}{6} \quad(\triangle \mathrm{AEB}\| \| \mid \Delta \mathrm{ADC}) \tag{2}\\ & =\frac{2}{3} \end{align*}$		\checkmark answer \checkmark reason
10.2	$\begin{aligned} & \mathrm{HE}=2 \mathrm{~cm} \\ & \mathrm{AH}=4 \mathrm{~cm} \\ & \mathrm{ED}=3 \mathrm{~cm} \\ & \begin{aligned} \mathrm{AD} \cdot \mathrm{HE} & =(\mathrm{AH}+\mathrm{HE}+\mathrm{ED}) \cdot \mathrm{HE} \\ & =(4+2+3) \cdot(2) \\ & =18 \end{aligned} \end{aligned}$		\checkmark AH and ED $\begin{aligned} & \checkmark \mathrm{AD}=\mathrm{AH}+ \\ & \mathrm{HE}+\mathrm{ED} \end{aligned}$ (2)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 11

11.1	$\hat{\mathrm{D}}_{1}$ $=\hat{\mathrm{A}}_{4}$ (tan-chord theorem) $=\hat{\mathrm{C}}_{2}$ $($ alt \angle 's, $\mathrm{BA} \\| \mathrm{CE})$ OR $\begin{aligned} \hat{\mathrm{C}}_{2} & =\hat{\mathrm{D}}_{2} & & (\angle ' \mathrm{~s} \text { in same seg }) \\ & =\hat{\mathrm{A}}_{1} & & (\text { tan-chord theorem }) \\ & =\hat{\mathrm{E}}_{2} & & (\text { alt } \angle ' \mathrm{~s}, \mathrm{BA} \\| \mathrm{CE}) \\ & =\hat{\mathrm{D}}_{1} & & (\angle ' \mathrm{~s} \text { in same seg }) \end{aligned}$ OR $\begin{array}{ll} \hat{\mathrm{A}}_{3}+\hat{\mathrm{A}}_{4}=90^{\circ} & (\tan \perp \mathrm{rad}) \\ \hat{\mathrm{F}}_{1}=90^{\circ} & (\mathrm{AB} \\| \mathrm{EC} ; \text { coint } \angle \mathrm{s}) \end{array}$ In $\triangle \mathrm{AFC}: \quad \hat{\mathrm{C}}_{2}=90^{\circ}-\hat{\mathrm{A}}_{3}(\angle \operatorname{sum} \Delta)$ $\hat{\mathrm{C}}_{1}+\hat{\mathrm{C}}_{2}=90^{\circ} \quad(\angle \mathrm{s}$ in semi circle $)$ In $\triangle \mathrm{ADC}: \quad \hat{\mathrm{D}}_{1}=90^{\circ}-\hat{\mathrm{A}}_{3}(\angle \operatorname{sum} \Delta)$ $\hat{D}_{1}=\hat{C}_{2}$	\checkmark Statement \checkmark Reason \checkmark S/R \checkmark Statement \checkmark Reason \checkmark S/R

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

