

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

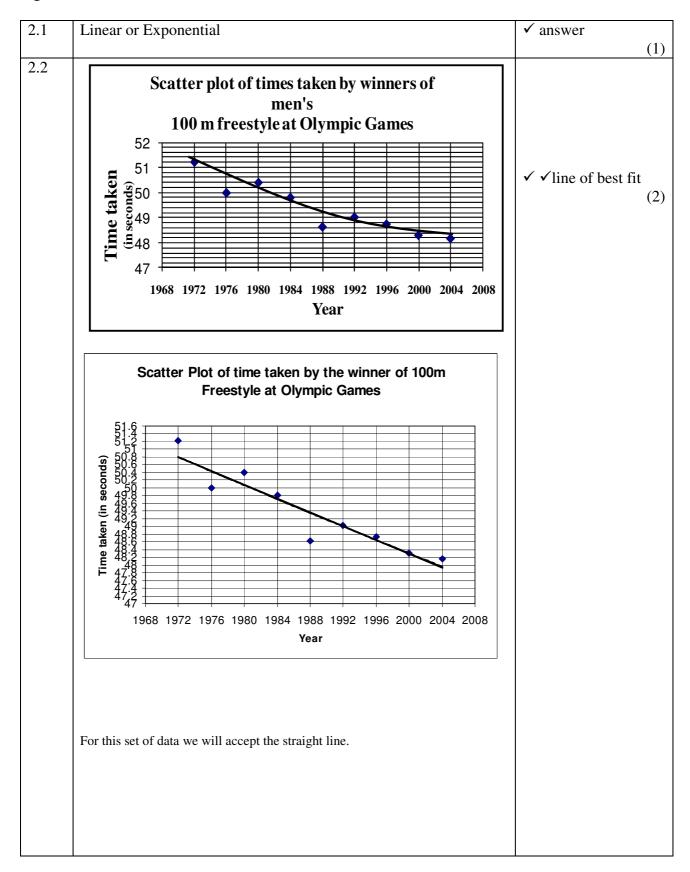
MATHEMATICS P2

NOVEMBER 2009(1)

MEMORANDUM

MARKS: 150

This memorandum consists of 25 pages.


- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

1.1	Mean = $\frac{522,5}{12}$ = 43,5	✓ 522,5
	$\frac{1}{12} = \frac{1}{12} = 45,5$	✓ answer
		(2)
	ANSWER ONLY: Full marks	No penalty for
		Rounding:
		Accept 43,54; 44
1.2	Ordered Data	√ 9,3
	9,3 14,9 15 23,6 26,1 28 32,5 60,9	
	65,7 71,9 76,4 98,2	✓ 19,3
		√ 30,3
	Median = $\frac{28 + 32,5}{2}$ = 30,3	✓ 68,8
	$\frac{1}{2} = \frac{30,3}{2}$	
	15+23.6	√ 98,2
	Lower quartile = $\frac{15 + 23,6}{2}$ = 19,3	(5)
	657+719	
	Upper quartile = $\frac{65,7+71,9}{2} = 68,8$	If indicated on the
	2	box and whisker
	The five number summary is (9,3; 19,3; 30,25; 68,8; 98,2)	diagram in 1.3 –
	OR	5 marks
	If they use the formula:	
	Ordered Data	
	9,3 14,9 15 23,6 26,1 28 32,5 60,9	
	65,7 71,9 76,4 98,2	
	$P_{50} = \frac{12+1}{2} = 6.5$	
	Position of median: $\frac{1}{50} = \frac{1}{2} = 0.5$	
	$\therefore Q_2 = \frac{28 + 32,5}{2} = 30,3$	
	$Q_2 - \frac{1}{2} - 30,5$	
	Position of lower quartile: $P = \frac{13}{12}$	
	Position of lower quartile: $P_{25} = \frac{13}{4}$	
	$\therefore Q_1 = 15 + (0.25(23.6 - 15)) = 17.15$	
	Position of upper quartile: $P_{75} = 0.75(13) = 9.75$	
	$\therefore Q_3 = 65.7 + (0.75(71.9 - 65.7)) = 70.35$	
	Min = 9.3 $Max = 0.9.2$	
	Max = 98,2	
	Accept any one of these five number summaries:	
	(9,3; 19,3; 30,3; 68,8; 98,2)	
	(9,3; 15; 30,3; 71,9; 98,2)	
	(9,5, 15, 30,5, 71,9, 98,2) (9,3; 17,2; 30,3; 70,4; 98,2)	
	(7,5, 17,2, 50,5, 70,7, 70,2)	
1		<u> </u>

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

					1
1.3	-				✓ minimum and maximum values ✓ quartiles and median
	0 10	20 30	40 50 6	60 70 80 90 100	✓ whiskers with median line
		"		hisker without any mbers: 1/3	(3)
1.4	The data is s	kewed to the	right (positive	ely skewed).	✓ ✓ comment about
				ference between the median	rainfall.
			(some month	s had exceptionally high	(2)
	rainfall in th	at year).			Note:
	Die data is s	keef na regs	(positief skeef	·)	Skewed to right 1/2
		v		l is tussen die mediaan en d	lie
		,	0	et ongewoon hoë reënval	✓ ✓ verwysing na
	gehad gedur	ende die jaar	:		reënval
1.5	Dy using the	a a laulator	σ = 29 10	(28,19058256)	(2)
1.3	by using the	e calculator,	O = 28,19.	(28,19038230)	Accept: 28; 28,2;
		_	nod (not reco		28,1
	Mean = 43,5	4	T /	(43,54166667)	(3)
	x	$x-\overline{x}$	$(x-\overline{x})^2$		
	60,9	17,36	301,3696		
	14,9	-28,64	820,2496		
	9,3	-34,24	1172,378		
	28,0	-15,54	241,4916		
	71,9	28,36	804,2896		
	76,4	32,86	1079,78		
	98,2 65,7	54,66 22,16	2987,716 491,0656		
	26,1	-17,44	304,1536		✓ headings correct
	32,5	-17,44	121,8816		✓ sum of the squares
	23,6	-19,94	397,6036		of the mean
	15,0	-28,54	814,5316		deviations
		um	9536,509		
	9536.5	509	•		
	$\sigma = \frac{300000000000000000000000000000000000$	$\frac{509}{}$ = 28,19		(28,19059)) ✓ answer
					(3)
					[15]

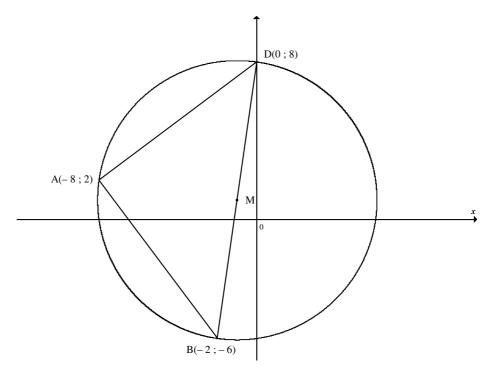
- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

2.3	The scatter plot shows an overall decrease in the time taken by the winner since 1972.	✓ decrease/afname (1)
	Die spreidiagram dui 'n algehele afname in tye aangeteken deur	(1)
	die wenners vanaf 1972.	
	OR	
	Times are faster. Tye is vinniger.	
	OR	
	Negative correlation between year and time.	
	Negatiewe korrelasie tussen jaar en tyd.	
2.4	The top athletes of the world have turned professional. This	
	allows them to train at the best facilities and receive the best	✓ any acceptable
	coaching available.	reason relating to the
	Also, equipment manufacturers are in competition with each	trend
	other. In this case, manufacturers are designing swimsuits that	(1)
	assist swimmers	
	Swimmers train harder and put in more effort.	
	Die top atlete van die wêreld het professionele atlete geword. Dit	🗸 enige aanvaarbare
	laat hulle toe om by die beste fasiliteite te oefen en die beste	rede wat verband hou
	afrigting te ontvang.	met die neiging.
	Vervaardigers van voorraad is in kompetisie met mekaar. Hul	(1)
	onwerp dus swembroeke wat die swemmers help.	
	Swemmers oefen harder en gebruik meer tyd om te oefen.	
2.5	In the context of the times around these two observations, one can	✓✓ acceptable reason
	consider the efforts of 1976 and 1988 to be outliers. This shows	in context
	that these athletes were exceptionally good swimmers at the time.	(2)
	Binne die konteks van tye gedurende hierdie twee waarnemings,	✓✓ aanvaarbare rede
	kan die poging van 1976 and 1988 gesien word as uitskieters. Dit	binne die konteks
	dui daarop dat hierdie atlete uitstekende swemmers was daardie	
2 (tyd.	(2)
2.6	Winning time of 2008 is expected to be about 47,6 seconds.	✓ answer from graph
	Accept answer from candidate's graph.	(1)
		[8]

3.1	50	✓ answer
		(1)
3.2	Cut-off mark of 56% (37 students)or 58% (38 students) Accept interval: 55% - 60%	✓ answer read off from ogive

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.


3.3			
	Marks	Frequency	
	(out of 100)	(f)	
	0 ≤ marks <10	1	✓ class intervals
	10 ≤ marks <20	3	Accept 0 – 10; 10 – 20
	20 ≤ marks <30	4	Or $0 < \text{marks} \le 10$
	30 ≤ marks <40	11	Or
	40 ≤ marks <50	12	Between 0 and 10 Or
	50 ≤ marks <60	9	From 0 to 10
	60 ≤ marks <70	5	If the intervals not in
	70 ≤ marks <80	4	tens, the mark for intervals not given
	80 ≤ marks <90	1	11101 / 1110 1100 gr / 411
	90 ≤ marks <100	0	✓ method
			✓ accuracy of five
			answers
			(3)
			[5]

4.1	$\tan 45^{\circ} = m_{AB}$	✓ tan 45°	
	=1	✓ answer	
	OR		(2)
	3-0 3	Answer only: full marks	
	$m_{AB} = \frac{3-0}{1-t} = \frac{3}{1-t}$		
4.2	$\frac{3-0}{1} = \tan 45^\circ = 1$	✓equating	
	1-t		
	1-t=3	✓ value	
	t = -2		(2)
	OR		(2)
	y = mx + c		
	3 = (1)(1) + c		
	c=2	✓c=2	
	y = x + 2		
	(t;0) in y = mx + 2		
	0 = t + 2		
	t = -2	√value	(2)
			(2)
		Answer only: full marks	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

		_
4.3	$\sqrt{(1-p)^2 + (3+4)^2} = \sqrt{50}$	✓ substitution into distance formula
	$(1-p)^2 + (3+4)^2 = 50$	Tormura
	$1 - 2p + p^2 + 49 = 50$	√ aynangian
	$p^2 - 2p = 0$	✓ expansion
	p(p-2) = 0	✓factors
	$p \neq 0$ or $p = 2$	✓ answer Note: If an answer was not
	OR	chosen: 3/4
		✓ substitution into distance (4)
	$(1-p)^2 + (3+4)^2 = 50$	formula
	$(1-p)^2 = 50 - 49$	
	$(1-p)^2 = 1$	✓ expansion
	$ \begin{vmatrix} 1-p=1 & 1-p=-1 \\ p \neq 0 & p=2 \end{vmatrix} $	✓factors
	$p \neq 0$ $p = 2$	✓ answer (4)
	OR	If gradient of BC assumed as -1
	Let $p = 2$	and p calculated correctly: 0/4
	$AC = \sqrt{(1-2)^2 + (3+4)^2}$	Answer only: 1/4
	$=\sqrt{1+49}$	✓ substitution into distance
	$=\sqrt{50}$	✓ substitution into distance formula
	which is true	
	$\therefore p = 2$	$\checkmark \sqrt{50}$
		✓ which is true(justification) ✓ answer
		(4)
		If equating to $\sqrt{50}$ from the
4.4	(-2+2,0-4)	start, then $3/4$
	midpoint of BC = $\left(\frac{-2+2}{2}; \frac{0-4}{2}\right)$	$\checkmark x$ -value $(x = \frac{t+p}{2})$
	midpoint of BC = $(0; -2)$	
		\checkmark y-value (2)
1.5		
4.5	Gradient of line = $m_{AB} = 1$ Equation of line is: $y + 4 = 1(x - 2)$	✓ gradients are equal ✓ substitution of (p;-4)
	y = x - 6	✓ equation in any form
	OR	(3)
	y = mx + c	[13]
	y = x - p - 4	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

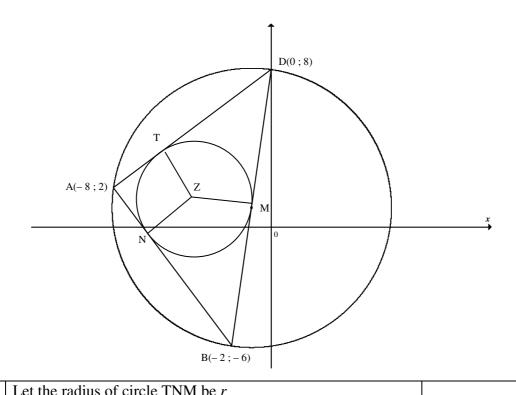
5.1	Midpoint BD $\left(\frac{0-2}{2}; \frac{8-6}{2}\right)$	✓ x-coordinate ✓ y-coordinate
	(2 2) = $(-1; 1)$	(2)
5.2	y = 7(-8) + 58	√substitution
	= 2	(1)
	∴ A lies on the line.	Substitute both at the same time with justification (1)
5.3	The line $y = 7x + 58$ is a tangent to the circle at A.	✓relationship
	$m_{line} = 7$ $m_{AM} = \frac{2-1}{-8-(-1)} = -\frac{1}{7}$ $m_{line} \times m_{AM} = 7 \times -\frac{1}{7} = -1$ $\therefore AM \perp \text{ to the line}$	$\checkmark m_{AM} = \frac{2-1}{-8-(-1)} = -\frac{1}{7}$ $\checkmark m_{line} = 7$ $\checkmark \text{product}$ (5)
	OR	

NOTE:

 $m_{line} = 7$ and CA gradient of AM then no relationship: 4/5

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.


5.3	OR	
contd	$m_{BD} = 7$	$\checkmark \checkmark m_{BD} = 7$
	$m_{line} = 7$	$\sqrt{m_{line}} = 7$
	:. line // diameter	
		✓ conclusion (5) Note: Only lines parallel
		4/5
	OR	
	$(x+1)^2 + (y-1)^2 = 50$	✓ circle equation
	$x^2 + 2x + 1 + y^2 - 2y + 1 = 50$	✓ substitution of $y = 7x +$
	$x^{2} + 2x + 1 + (7x + 58)^{2} - 2(7x + 58) + 1 = 50$	58
	$x^{2} + 2x + 1 + 49x^{2} + 812x + 3364 - 14x - 116 + 1 = 50$	
	$50x^2 + 800x + 3200 = 0$	✓ standard form
	$x^2 + 16x + 64 = 0$	standard form
	$(x+8)^2 = 0$	✓ answer
	x = -8	✓ tangent
	y=2	(5)
	y = 7x + 58 is a tangent to the circle	
5.4	$AD = \sqrt{(8-2)^2 + (0+8)^2}$	✓ substitution
	$=\sqrt{36+64}$	
	• • • • • • • • • • • • • • • • • • • •	✓ answer
	=10	answer
	$AB = \sqrt{(2+6)^2 + (-8+2)^2}$	✓ substitution
	$=\sqrt{64+36}$	
	= 10	✓ answer
		(4)
		Note: Answers $\sqrt{10}$ then $3/4$
		JIT

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.5	$m_{AD} = \frac{8 - (2)}{0 - (-8)}$	
	$m_{AD} = \frac{3}{4}$	✓ gradient of AD
	$m_{AB} = \frac{2 - (-6)}{-8 - (-2)}$	
	$ \begin{aligned} -8 - (-2) \\ &= -\frac{4}{3} \end{aligned} $	✓ gradient of AB
	$m_{AB}.m_{AD} = -\frac{4}{3} \times \frac{3}{4}$	
	$= -1$ $D\hat{A}B = 90^{\circ}$	✓ PRODUCT (3)
	OR BD ² = $(8+6)^2 + (0+2)^2$ = 200	✓ distance formula
	$= AD^2 + AB^2$ $\therefore D \hat{A} B = 90^{\circ}$	✓ Pythagoras ✓ conclusion (3)
	OR	
	$a^{2} = b^{2} + d^{2} - 2(b)(d)\cos A$ $200 = 100 + 100 - 2(10)(10)\cos A$	✓ cos rule ✓ substitution
	$0 = -200\cos A$	✓ conclusion
	$A = 90^{\circ}$	(3)
	$ \begin{array}{l} \mathbf{OR} \\ (AD)^2 = 100 \end{array} $	
	$(AB)^{2} = 100$ $BD^{2} = (-2 - 0)^{2} + (-6 - 8)^{2}$	$\checkmark BD^2 = 200$
	=4+196 = 200	$\checkmark BD^2 = AD^2 + AB^2$
	$\therefore BD^2 = AD^2 + AB^2$	✓ conclusion (3)
	$\therefore D\hat{A}B = 90^{\circ} \qquad \text{(Pyth)}$	
	OR $\hat{A} = 90^{\circ}$ (angles in semi - circle)	✓ ✓ reason (3)
5.6	$\theta = 45^{\circ}$	✓ answer (1)

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

5.7	Let the radius of circle TNM be <i>r</i>	
3.1	NB = BM (properties of a kite)	✓ NB = BM
	AN = TZ = r (TZNA is a square)	$\checkmark \text{AN} = \text{TZ} = r$
	NB = 10 - r $NB = 10 - r$	$\checkmark NB = 10 - r$
	BD = 2MB	$\checkmark BD = 2MB$
	$\sqrt{(8-(-6))^2 + (0-(-2))^2} = 2(10-r)$	\checkmark BD = $\sqrt{200}$
	$\sqrt{200} = 2(10 - r)$	
	$10\sqrt{2} = 2(10 - r)$	
	$r = 10 - 5\sqrt{2}$	✓answer
	= 2,93	(6)
	OR	
	$ZMB = 90^{\circ}$	✓ tan radius theorem
	1 —	V tail faulus theolein
	$MB = \frac{1}{2}\sqrt{200}$	
	= 7,07	✓✓MB
		TVID
	$\frac{ZM}{MB} = \tan 22.5^{\circ}$	
	MB	✓✓tan 22,5°
	$ZM = 7.07 \tan 22.5^{\circ}$	22,3
	= 2,93	
		✓answer
	OR	(6)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$MB^{2} = (-1+2)^{2} + (1+6)^{2}$ $= 1+49$	√√MB
=50	V V MIB
	✓ tan 22,5°
$ZM = 7.07 \tan 22.5^{\circ}$	✓✓ answer (6)
- 2,7 <i>3</i>	(0)
OR	
By a well known formula	
Area $\triangle ABD = r \times (\text{semi-perimeter})$ $\frac{1}{2} \times 10 \times 10 = r \times \frac{1}{2} (20 + \sqrt{200})$	✓ formula $\checkmark \sqrt{200}$ ✓ answer
$50 = r(10 + 5\sqrt{2})$	(6)
$MB = \sqrt{50}$ (radius of circle)	✓MB ✓ NB
AB = 10 (adjacent sides of kite)	
$AN = 10 - \sqrt{50} \\ - 2.93$	✓✓AN = 2,93
But TANZ is a square	✓ square ✓ answer
$\therefore AN = ZN$ $\therefore \text{ radius} = 2,93$	(6)
	$= 1+49$ $= 50$ $MB = \sqrt{50}$ $\frac{ZM}{MB} = \tan 22.5^{\circ}$ $ZM = 7.07 \tan 22.5^{\circ}$ $= 2.93$ OR By a well known formula Area $\triangle ABD = r \times (\text{semi-perimeter})$ $\frac{1}{2} \times 10 \times 10 = r \times \frac{1}{2} (20 + \sqrt{200})$ $50 = r(10 + 5\sqrt{2})$ $r = 2.93$ OR $MB = \sqrt{50} \qquad (\text{radius of circle})$ $NB = \sqrt{50} \qquad (\text{adjacent sides of kite})$ $AB = 10$ $AN = 10 - \sqrt{50}$ $= 2.93$ But TANZ is a square $\therefore AN = ZN$

Mathematics/P2 13 NSC – Memorandum

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 6

6.1.1	$4\times5 = 20$ squared units	√√answer
		$\begin{bmatrix} 2^2 \times 5 & 1/2 \\ \text{If } 2 \times 5 = 10 & 0/2 \\ & (2) \end{bmatrix}$
6.1.2	$(x;y) \rightarrow (2x;2y)$	✓ 2 <i>x</i> ✓ 2 <i>y</i>
	Note:	(2)
	If candidate state: coordinates times two 2/2	If $(kx; ky):1/2$
		If $2(x; y)$: $2/2$
6.1.3	-	\checkmark coordinates A'
		✓ coordinates B' ✓ coordinates C'
	A'	(3)
	(-2;8) $(8;8)$	
		If diagram not drawn but
		coordinates
		correctly given: 1/3
	B' A C	If coordinates
		correctly plotted but
		not joined: 2/3
	X 7 5 5 4 3 5 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	-	
6.1.4	Not rigid. The shape remains the same, whilst the size is changed /enlarged	✓✓ same shape and
	Note:	different size (2)
	Shape remains the same: 1/2	not rigid only 2/2
()	Only the shape remains the same: 2/2	just enlarged 0/2
6.2	Reflection about the line $y = x : (x; y) \rightarrow (y; x)$	Mark per coordinate ✓✓ reflection
	Rotate clockwise about the origin: $(y; x) \rightarrow (x; -y)$	✓✓rotation
	Translate 2 left and 3 down: $(x; -y) \rightarrow (x-2; -y-3)$	✓ translation (6)
	OR	
	General rule: $(x; y) \rightarrow (x-2; -y-3)$	Answer only: Full marks
		[15]
		l .

Mathematics/P2 14 NSC – Memorandum

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

OR The first 2 transformations in the given order is the same as the rein the <i>x</i> -axis i.e. $(x; y) \rightarrow (x; -y)$ Then the translation gives us	eflection
$(x; y) \to (x; -y) \to (x-2; -y-3)$	
NOTE: If just given: $(x; y) \to (x-2; y-3): 2/6$	If learner starts with
If using $(x; y) \rightarrow (y; x) \checkmark \checkmark$ $(x; y) \rightarrow (y; -x) \checkmark$ $(x; y) \rightarrow (x-2; y-3) \checkmark$ throughout :4/6	(x; y) and continue to use $(x; y)$ for the second and third transformation 4/6

QUESTION 7

7.1	$T'(x\cos\theta - y\sin\theta; y\cos\theta + x\sin\theta)$	✓ x coordinate
		\checkmark y coordinate (2)
		Clock-wise formula: 0/2
7.2	$A'(p\cos 135^{\circ} - q\sin 135^{\circ}; q\cos 135^{\circ} + p\sin 135^{\circ})$	✓ x coordinate
		✓ y coordinate
	If clockwise rotation:	(2)
	A' $(p\cos 135^{\circ} + q\sin 135^{\circ}; q\cos 135^{\circ} - p\sin 135^{\circ})$	
		CA from 7.1
7.3	$x' = p\cos(135^{\circ}) - q\sin(135^{\circ})$	
	$-1 - \sqrt{2} = -p\cos 45^\circ - q\sin 45^\circ$	✓ equating
	$-1 - \sqrt{2} = -p\left(\frac{\sqrt{2}}{2}\right) - q\left(\frac{\sqrt{2}}{2}\right)$	✓ substitution
	$-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} q(1)$	
	and n and (125%) + n sin (125%)	✓ equating
	$y' = y\cos(135^\circ) + p\sin(135^\circ)$	cquating
	$1 - \sqrt{2} = -q\cos 45^\circ + p\sin 45^\circ$	
	$1 - \sqrt{2} = q \left(-\frac{\sqrt{2}}{2} \right) + p \left(\frac{\sqrt{2}}{2} \right)$	✓ substitution $\frac{\sqrt{2}}{2}$
	$1 - \sqrt{2} = -\frac{\sqrt{2}}{2}q + \frac{\sqrt{2}}{2}p(2)$	
	(1) + (2):	
	$-2\sqrt{2} = -\sqrt{2}q$	✓ solving simultaneously
	q = 2	

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

 \checkmark answer for qSubstitute q = 2 into(1) $-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} (2)$ $-1 = -\frac{\sqrt{2}}{2}p$ Note: If not left in surd form: 6/7 \checkmark answer for p $p = \sqrt{2}$ $A = (\sqrt{2}; 2)$ (7) OR $x' = p\cos(135^{\circ}) - q\sin(135^{\circ})$ ✓ equating $-1 - \sqrt{2} = -p \cos 45^{\circ} - q \sin 45^{\circ}$ ✓ substitution $-1 - \sqrt{2} = -p \left(\frac{\sqrt{2}}{2}\right) - q \left(\frac{\sqrt{2}}{2}\right)$ $-1 - \sqrt{2} = -\frac{\sqrt{2}}{2} p - \frac{\sqrt{2}}{2} q \dots (1)$ and $y' = y \cos(135^\circ) + p \sin(135^\circ)$ ✓ equating $1 - \sqrt{2} = -q \cos 45^{\circ} + p \sin 45^{\circ}$ $1 - \sqrt{2} = q \left(-\frac{\sqrt{2}}{2} \right) + p \left(\frac{\sqrt{2}}{2} \right)$ \checkmark substitution $\frac{\sqrt{2}}{2}$ -0.41 = -0.71q + 0.71p...(2)(1) + (2): $-2\sqrt{2} = -\sqrt{2}a$ ✓ solving simultaneously Substitute q = 2 into(1) -2.41 = -0.71p - 0.71q \checkmark answer for q1,42 p = 2p = 1.41 \checkmark answer for pNote: If not left in $\therefore A = (\sqrt{2}; 2)$ surd form: 6/7 (7)OR

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$$-\frac{\sqrt{2}}{2}(p+q) = -1 - \sqrt{2}$$

$$p + q = -\frac{2}{\sqrt{2}}(-1 - \sqrt{2})$$

$$p + q = \sqrt{2} + 2$$

and

$$\frac{1}{\sqrt{2}}(p-q) = 1 - \sqrt{2}$$

$$p-q = \sqrt{2} - 2$$

$$p+q = \sqrt{2} + 2$$

$$2p = 2\sqrt{2}$$

$$p = \sqrt{2}$$

$$q = 2$$

OR

A(p;q) is obtained from A' by a rotation through 135° in a clockwise direction

$$p = (-1 - \sqrt{2})\cos(-135^{\circ}) - (1 - \sqrt{2})\sin(-135^{\circ})$$

$$= (-1 - \sqrt{2})\left(-\frac{1}{\sqrt{2}}\right) - (1 - \sqrt{2})\left(-\frac{1}{\sqrt{2}}\right)$$

$$= \frac{2}{\sqrt{2}}$$

$$= \sqrt{2}$$

$$q = (1 - \sqrt{2})\cos(-135^{\circ}) + (-1 - \sqrt{2})\sin(-135^{\circ})$$

$$= (1 - \sqrt{2})\left(-\frac{1}{\sqrt{2}}\right) + (-1 - \sqrt{2})\left(-\frac{1}{\sqrt{2}}\right)$$

$$= \frac{2\sqrt{2}}{\sqrt{2}}$$

$$= 2$$

$$\therefore \Delta = (\sqrt{2} \cdot 2)$$

✓

$$-\frac{\sqrt{2}}{2}(p+q) = -1 - \sqrt{2}$$

✓ substitution

$$\checkmark \frac{1}{\sqrt{2}}(p-q) = 1 - \sqrt{2}$$

$$\checkmark$$
 substitution $\frac{\sqrt{2}}{2}$

✓ solving simultaneously

 \checkmark answer for q

 \checkmark answer for p

(7)

✓ substituting $(-1-\sqrt{2})$

 \checkmark substitution $\frac{1}{\sqrt{2}}$

✓ equating

 \checkmark substitution $\frac{1}{\sqrt{2}}$

✓ substituting

 $(-1-\sqrt{2})$

 \checkmark answer for q

 \checkmark answer for p

(7)

Copyright reserved

Please turn over

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

0.1		1
8.1	$\sin \alpha = \frac{8}{17} \tag{-15;8}$	
	17	$x = -\sqrt{15}$
	$\sin \alpha > 0$: in second quadrant	✓ answer
	$y_{\alpha} = 8$ $r_{\alpha} = 17$	(3)
	$x_{\alpha} = -15$ (Pythagoras)	For drawing the radius
	$\tan \alpha = -\frac{8}{15}$	vector in the correct quadrant 1/3
	$\tan \alpha = -\frac{1}{15}$	quadrant 1/3
		Without a sketch but
		correct values: 3/3
8.2	$\sin(90^{\circ} + \alpha) = \cos \alpha$	✓ reduction
	15	✓ answer
	$=-\frac{15}{17}$	(2)
	17	Answer only: full marks
		Cannot accept decimal
8.3	2 1 2 2	values
8.3	$\cos 2\alpha = 1 - 2\sin^2 \alpha$	✓ expansion
	$=1-2\left(\frac{8}{17}\right)^2$	
	$=1-2\left(\frac{1}{17}\right)$	✓ substitution
	161	
	$=\frac{161}{289}$	✓ any further
	20)	calculation or answer
	OR	(3)
	$\cos 2\alpha = 2\cos^2 \alpha - 1$	✓ expansion
	$(-15)^2$	CApansion
	$=2\left(\frac{-15}{17}\right)^2-1$	
		✓ substitution
	$=\frac{161}{}$	
	289	✓ any further
	OB	calculation or answer
	$\mathbf{OR} \\ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	(3)
		✓ expansion
	$=\left(\frac{-15}{17}\right)^2 - \left(\frac{8}{17}\right)^2$	CApansion
	_ (17) (17)	
	$=\frac{161}{}$	✓ substitution
	$={289}$	
		✓ any further
		calculation or answer
		(3)
		[8]

Mathematics/P2

DoE/November 2009(1)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

QUESTION 9

NOTE: Only penalise once in the question for leaving out the x Penalise once in this question for treating as an equation

9.1	$\sin(90^{\circ} - x).\cos(180^{\circ} - x) + \tan x.$	$\cos(-x) \cdot \sin(180^\circ + x)$	
	$= \cos x(-\cos x) + \tan x(\cos x)(-\sin x)$	(in x)	$\checkmark \sin(90^\circ - x) = \cos x$
		,	$\checkmark \cos(180^{\circ} - x) = -\cos x$
	$=-\cos^2 x - \frac{\sin x}{\cos x} \cos x \sin x$		$\checkmark \cos(-x) = \cos x$
	$=-\cos^2 x - \sin^2 x$		$\checkmark \sin(180^\circ + x) = -\sin x$
	$= -(\cos^2 x + \sin^2 x)$		$\checkmark \tan x = \frac{\sin x}{\cos x}$
			$\cos x$
	=-1		✓ simplification ✓ answer
			(7)
9.2	sin 190° cos 225° tan 390°		
	cos100° sin135°		
	$-\sin 10^{\circ}(-\cos 45^{\circ})\tan 30^{\circ}$		$\checkmark \sin 190^\circ = -\sin 10^\circ$
	$= \frac{-\sin 10^{\circ} \sin 45^{\circ}}{-\sin 10^{\circ} \sin 45^{\circ}}$		$\sqrt{\cos 225^\circ = -\cos 45^\circ}$
	1 1		$\sqrt{\tan 390^{\circ}} = \tan 30^{\circ}$ $\sqrt{\cos 100^{\circ}} = -\sin 10^{\circ}$
	$= \frac{-\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{3}}}{\sqrt{3}} \text{or} = -\tan 30$	ე ∘	$\sqrt{\sin 135^{\circ}} = \sin 45^{\circ} \text{ or}$
		If using – cos 80°: no penalty	$\cos 45^{\circ}$
	$\frac{1}{\sqrt{2}}$	If using cos oo . no penarty	
	= - 1	If the candidate stop at	✓✓ substitution
	$\sqrt{3}$	_ 1 1	(7)
		$= \frac{\sqrt{2} \cdot \sqrt{3}}{6/7}$	(1)
		$\frac{1}{\sqrt{-}}$	
		$\sqrt{2}$	
9.3	$\sin x + 2\cos^2 x = 1$		
	$\sin x + 2(1 - \sin^2 x) = 1$		✓ substitution of identity
	$-2\sin^2 x + \sin x + 1 = 0$		✓ standard form
	$2\sin^2 x - \sin x - 1 = 0$		✓ factorisation
	$(2\sin x + 1)(\sin x - 1) = 0$		V factorisation
	$\sin x = 1$		\(\sin u = 1 \sin u = 1\)
	$x = 90^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$		$\checkmark \sin x = 1; \sin x = -\frac{1}{2}$
	Or		$\sqrt{x} = 90^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$
			✓✓ answers (any two
			answers)
			(7)
			If $k \in \mathbb{Z}$ not included: 6/7
			Also $\pm k.360^{\circ}; k \in N_0 \text{ or } Z$
			11100 ± 10.500 , 10 = 10 01 E

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$$\sin x = -\frac{1}{2}$$

$$x = 210^{\circ} + k.360^{\circ}; k \in Z \quad OR \quad x = 210^{\circ} + k.360^{\circ}$$
or $x = 330^{\circ} + k.360^{\circ}; k \in Z \quad or \quad x = -30^{\circ} + k.360^{\circ}$
OR
$$x = -150^{\circ} + k.360^{\circ}; k \in Z \quad OR \quad x = -150^{\circ} + k.360^{\circ}; k \in Z$$
or $x = 330^{\circ} + k.360^{\circ}$
or $x = -30^{\circ} + k.360^{\circ}$

OR

$$\sin x + 2\cos^{2} x = 1$$

$$\sin x = 1 - 2\cos^{2} x$$

$$\sin x = -\cos 2x$$

$$\sin x = -\left[\sin(90^{\circ} - 2x)\right]$$

$$x = 180^{\circ} + (90^{\circ} - 2x) + k360^{\circ}$$

$$3x = 270^{\circ} + k360^{\circ}$$

$$x = 90^{\circ} + k120^{\circ}$$

$$k \in Z$$
or
$$x = 360^{\circ} - (90^{\circ} - 2x) + k360^{\circ}$$

$$x = -270^{\circ} - k360^{\circ}$$

OR

$$\sin x + 2\cos^{2} x = 1$$

$$\sin x = 1 - 2\cos^{2} x$$

$$\sin x = -\cos 2x$$

$$-\cos(90^{\circ} - x) = \cos 2x$$

$$2x = 180^{\circ} - (90^{\circ} - x) + k360^{\circ}$$

$$x = 90^{\circ} + k360^{\circ}$$

$$x = 30^{\circ} + k120^{\circ}$$

$$k \in Z$$

$$2x = 180^{\circ} + (90^{\circ} - x) + k360^{\circ}$$

$$x = 30^{\circ} + k120^{\circ}$$

✓ manipulation

✓ substitution of identity

✓ co ratios

$$\checkmark x = 180^{\circ} + (90^{\circ} - 2x) + k360^{\circ}$$

 $\checkmark x = 90^{\circ} + k120^{\circ}$
 $\checkmark x = 360^{\circ} - (90^{\circ} - 2x) + k360^{\circ}$
 $\checkmark x = -270^{\circ} - k360^{\circ}$

(7)

If $k \in \mathbb{Z}$ not included: 6/7

✓ manipulation

✓ substitution of identity

✓ co ratios

$$\sqrt{2x = 180^{\circ} - (90^{\circ} - x) + k360^{\circ}}$$

$$\sqrt{x} = 90^{\circ} + k360^{\circ}$$

$$\sqrt{2x} = 180^{\circ} + (90^{\circ} - x) + k360^{\circ}$$

$$\sqrt{x} = 30^{\circ} + k120^{\circ}$$

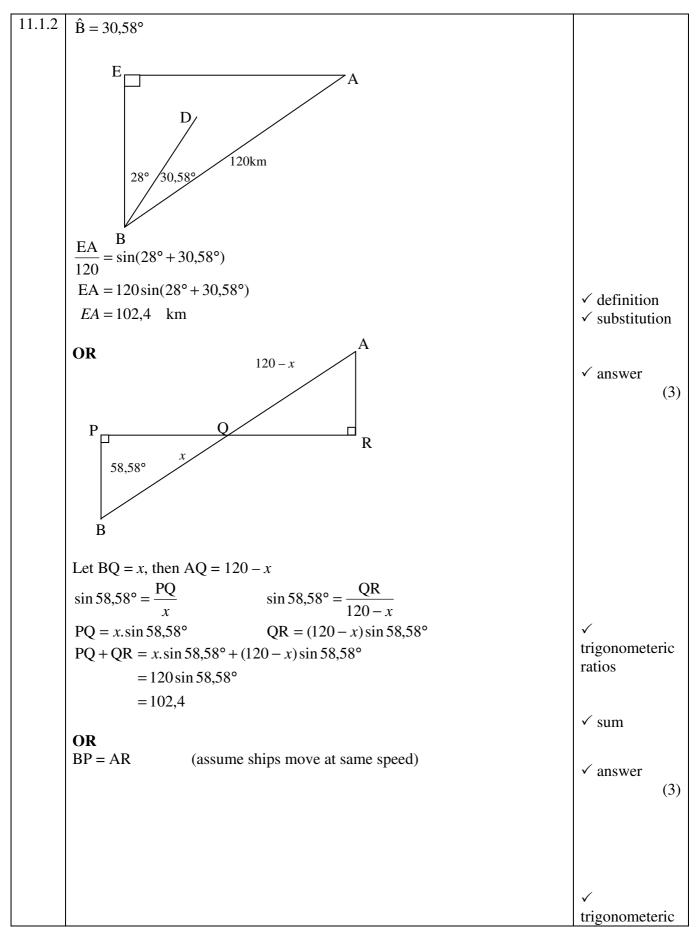
(7)

If $k \in \mathbb{Z}$ not included: 6/7

[20]

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$ \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B} \times \frac{1}{\cos A \cos B} $ $ = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B} \times \frac{1}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} + \frac{\cos A \sin B}{\cos A \cos B} $ $ = \frac{\cos A \cos B}{\cos A \cos B} + \frac{\cos A \cos B}{\cos A \cos B} $ $ = \frac{\tan A + \tan B}{1 - \tan A \tan B} $ $ = \frac{\cos A}{1 - \tan A \tan B} $ $ = \frac{\cos A}{1 - \tan A \tan B} $ $ = \frac{\cos A}{1 - \tan A \tan B} $ $ = \frac{\sin A \cos B}{1 - \tan A \sin B} $ $ = \frac{\sin A \sin B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{1 - \sin A \sin B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ = \frac{\sin A \cos A}{\cos A \cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} $ $ \Rightarrow \cos A \cos B \cos B $
$= \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B - \sin A \cdot \sin B} \times \frac{\cos A \cdot \cos B}{1 \cos A \cdot \cos B}$ $= \frac{\sin A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}$ $= \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$ $= \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}$ $= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ OR $RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $= \frac{\sin A}{1 - \sin A} + \frac{\sin B}{\cos A}$ $= \frac{\sin A}{\cos A} + \frac{\sin B}{\cos A}$ $= \frac{\sin A \cos B}{\cos A \cos B} + \sin B \cos A$ $= \frac{\sin (A + B)}{\cos (A + B)}$ $= \tan (A + B)$ $= LHS$ $= 10.2 \tan C = \tan (180^{\circ} - (A + B))$ $\tan C = -\tan (A + B)$ $\cot C =$
$\cos A \cdot \cos B$ $= \frac{\sin A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}$ $= \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} - \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}$ $= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ OR $RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $= \frac{\sin A}{1 - \cos A} + \frac{\sin B}{\cos A}$ $= \frac{\sin A \cos B}{1 - \frac{\sin A}{\cos A} + \frac{\sin B}{\cos A} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B} \times \frac{\sin A \cos B}{\cos A \cdot \cos B}$ $= \frac{\sin (A + B)}{\cos (A + B)}$ $= \tan (A + B)$ $= LHS$ $10.2 \tan C = \tan(180^{\circ} - (A + B))$ $\tan C = -\tan(A + B)$
$\cos A \cdot \cos B$ $= \frac{\sin A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}$ $= \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} - \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}$ $= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ OR $RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $= \frac{\sin A}{1 - \cos A} + \frac{\sin B}{\cos A}$ $= \frac{\sin A \cos B}{1 - \frac{\sin A}{\cos A} + \frac{\sin B}{\cos A} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B} \times \frac{\sin A \cos B}{\cos A \cdot \cos B}$ $= \frac{\sin (A + B)}{\cos (A + B)}$ $= \tan (A + B)$ $= LHS$ $10.2 \tan C = \tan(180^{\circ} - (A + B))$ $\tan C = -\tan(A + B)$
$= \frac{\sin A \cdot \cos B}{\cos A \cdot \cos A \cdot \cos B} + \frac{\cos A \cdot \sin B}{\cos A \cdot \cos A \cdot \cos B}$ $= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ OR $RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $= \frac{\sin A}{1 - \sin A \cdot \sin B} \times \frac{\sin A}{\cos A} + \frac{\sin B}{\cos A} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$ $= \frac{\sin A \cos A}{1 - \sin A \cdot \sin B} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$ $= \frac{\sin A \cos A}{\cos A \cos B} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos A \cos B}$ $= \frac{\sin A \cos B}{1 - \sin A \sin B} \times \frac{\cos A}{\cos A \cos B}$ $= \frac{\sin A \cos B}{\cos A \cos B} \times \sin B \cos A$ $\cos A \cos B - \sin A \sin B$ $\sin B \cos A \cos A \cos B \cos A \cos A$ $\cos A \cos B - \sin A \sin B$ $\sin B \cos A \cos A \cos B \cos A \cos A$ $\cos A \cos B - \sin A \sin B$ $\sin B \cos A \cos A \cos B \cos A \cos A$ $\cos A \cos A \cos B \cos A \cos A \cos B \cos A \cos B$ $\sin B \cos A \cos A \cos B \cos A \cos A \cos B \cos A$ $\cos A \cos A \cos B \cos A \cos A \cos B \cos A \cos B \cos A$ $\sin B \cos A \cos A \cos B \cos A \cos A \cos B \cos B$
$= \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} - \frac{\sin A \cdot \sin B}{\sin A \cdot \sin B}$ $= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ OR $RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $= \frac{\sin A}{1 - \cos A} + \frac{\sin B}{\cos A}$ $= \frac{\cos A \cdot \cos B}{1 - \frac{\sin A}{\cos A} + \frac{\sin B}{\cos A}}$ $= \frac{\cos A \cdot \cos B}{1 - \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}$ $= \sin (A + B)$ $= \tan (A + B)$ $= 1 - \tan (180^\circ - (A + B))$ $\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B)$
$= \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} - \frac{\sin A \cdot \sin B}{\sin A \cdot \sin B}$ $= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ OR $RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $= \frac{\sin A}{1 - \cos A} + \frac{\sin B}{\cos A}$ $= \frac{\cos A \cdot \cos B}{1 - \frac{\sin A}{\cos A} + \frac{\sin B}{\cos A}}$ $= \frac{\cos A \cdot \cos B}{1 - \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}$ $= \sin (A + B)$ $= \tan (A + B)$ $= 1 - \tan (180^\circ - (A + B))$ $\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B))$ $-\tan C = -\tan (180^\circ - (A + B)$
$ \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} = \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} $ $ = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} $ OR $ RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} $ $ = \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} $ $ = \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B} $ $ \sin = \frac{\sin(A + B)}{\cos(A + B)} $ $ = \tan(A + B) $ $ = 10.2 \tan C = \tan(180^\circ - (A + B)) $ $ \tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right) $ $ \tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B) $ $ \tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B) $ $ \forall \tan A \text{ and } \tan B $ $ \checkmark \frac{\sin A}{\cos A} $ $ \checkmark \frac{\sin A}{\cos A} $ $ \checkmark \text{ multiplication} $ $ \checkmark \text{ expansions} $ (3)
$ \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} $ OR $ RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} $ $ = \frac{\sin A}{1 - \tan A \cdot \tan B} $ $ = \frac{\sin A + \sin B}{1 - \tan A \cdot \tan B} $ $ = \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B} $ $ = \frac{\sin A \cos B}{\cos A \cos B} + \sin B \cos A $ $ \cos A \cos B - \sin A \sin B $ $ \sin \cos A \cos B + \sin B \cos A $ $ \cos A \cos B - \sin A \sin B $ $ \sin \cos A \cos B + \sin B \cos A $ $ \cos A \cos B - \sin A \sin B $ $ \sin \cos A \cos B + \sin B \cos A $ $ \cos A \cos B - \sin A \sin B $ $ \sin \cos A \cos B + \sin B \cos A $ $ \cos A \cos B - \sin A $ $ \cos A \cos B - \sin A $ $ \cos A \cos B - \sin A $ $ \cos A \cos B - \sin A $ $ \cos A \cos B - \sin A $ $ \cos A \cos B - \sin A $ $ \cos A \cos B - \sin A $ $ \cos A \cos B - \sin A $ $ \cot B \cos A \cos B - \sin A $ $ \cos A \cos B - \sin A $ $ \cot B \cos A \cos B - \sin A $
$ \begin{aligned} & = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} \\ & \text{OR} \\ & RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} \\ & = \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B} \\ & = \frac{\sin A + \sin B}{1 - \frac{\sin A}{\cos A} + \frac{\sin B}{\cos A \cdot \cos B}} \\ & = \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B} \\ & = \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B} \\ & = \frac{\sin (A + B)}{\cos (A + B)} \\ & = \tan (A + B) \\ & = LHS \end{aligned} $ $ \begin{aligned} & \text{In } C = \tan (180^\circ - (A + B)) \\ & \tan C = -\tan (A + B) \\ & \tan C = -\tan (A + B) \\ & \tan C = -(\tan A + \tan B) \\ & \tan C (1 - \tan A \cdot \tan B) = -(\tan A + \tan B) \end{aligned} $ $ \begin{aligned} & \text{Visin } A \\ & \cos A \\ & \text{Visin } A \\ & \cos A \\ & \text{Visin } A \\ & \cos A \\ & \text{Visin } A \\ & \cos A \\ & \text{Visin } A \\ & \cos A \\ & \text{Visin } A \\ & \cos A \\ & \text{Visin } A \\ & \cos A \\ & \text{Visin } A \\ & \text{visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{visin } A \\ & \text{visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & \text{visin } A \\ & \text{cos } A \\ & \text{Visin } A \\ & $
OR $RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $= \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B}$ $= \sin(A + B)$ $= \tan(A + B)$ $= 1 LHS$ $10.2 \tan C = \tan(180^{\circ} - (A + B))$ $\tan C = -\tan(A + B)$ $\tan C = -(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B})$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $= \frac{\tan A + \tan B}{\cot A \cos A}$ $= \frac{\sin A \cos A \cos A}{\cos A \cos B}$ $= \frac{\sin A \cos A}{\cos A \cos A}$ $= \frac{\sin A \cos A}{\cos A}$ $=$
$RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $= \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}$ $= \frac{\sin A \cos B}{1 - \frac{\sin A}{\cos A} \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}$ $= \sin (A + B)$ $= \tan (A + B)$ $= 1 LHS$ $10.2 \tan C = \tan (180^{\circ} - (A + B))$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C (1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $\tan C (1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $= \frac{\sin A}{\cos A}$ $\checkmark \text{ multiplication}$ $\checkmark \text{ expansions}$ (3) $\checkmark \text{ C}$ $\checkmark - \tan (A + B)$ $\checkmark \text{ substitution into formula}$
$RHS = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $= \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}$ $= \frac{\sin A \cos B}{1 - \frac{\sin A}{\cos A} \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}$ $= \sin (A + B)$ $= \tan (A + B)$ $= 1 LHS$ $10.2 \tan C = \tan (180^{\circ} - (A + B))$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C (1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $= \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$ $\tan C (1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $= \frac{\sin A}{\cos A}$ $\checkmark \text{ multiplication}$ $\checkmark \text{ expansions}$ (3) $\checkmark \text{ C}$ $\checkmark - \tan (A + B)$ $\checkmark \text{ substitution into formula}$
$ \frac{\sin A}{\sin A} + \frac{\sin B}{\cos B} \\ = \frac{\cos A}{\cos A} + \frac{\sin B}{\cos B} \\ = \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B} \\ = \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B} \\ = \frac{\sin (A + B)}{\cos (A + B)} \\ = \tan (A + B) \\ = LHS $ $ 10.2 \tan C = \tan(180^{\circ} - (A + B)) \\ \tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right) \\ \tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B) $ $ (3)$ $ \checkmark \text{ multiplication} $ $ \checkmark \text{ expansions} $ $ \checkmark \text{ cos } A $ $ \checkmark \text{ multiplication} $ $ \checkmark \text{ expansions} $ $ \checkmark \text{ expansions} $
$= \frac{\sin A}{\cos A} + \frac{\sin B}{\cos B} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B}$ $= \sin \left(\frac{A + B}{\cos(A + B)}\right)$ $= \tan(A + B)$ $= \ln B$ $= \ln $
$= \frac{\cos A - \cos B}{1 - \frac{\sin A \sin B}{\cos A \cos B}} \times \frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B}$ $= \sin(A + B)$ $= \tan(A + B)$ $= LHS$ $10.2 \tan C = \tan(180^{\circ} - (A + B))$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $\tan C = -\cot A \cdot \cot A \cdot \cot B$ $\tan C = -\cot A \cdot \cot A \cdot \cot B$ $\tan C = -\cot A \cdot \cot B$ $\tan C = -\cot A \cdot \cot B$ $\cot C = -\cot A \cdot \cot B$
$ \begin{array}{c} \cos A \cos B \\ = \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B} \\ \sin \\ = \frac{\sin(A+B)}{\cos(A+B)} \\ = \tan(A+B) \\ = LHS \end{array} $ $ \begin{array}{c} 10.2 \tan C = \tan(180^{\circ} - (A+B)) \\ \tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right) \\ \tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B) \end{array} $ $ \begin{array}{c} \cos A \cos B \\ \text{multiplication} \end{array} $ $ \begin{array}{c} \checkmark \text{ multiplication} $ $ \checkmark \text{ expansions} $ $ \checkmark \text{ C} $
$= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B}$ $= \frac{\sin(A+B)}{\cos(A+B)}$ $= \tan(A+B)$ $= LHS$ $10.2 \tan C = \tan(180^{\circ} - (A+B))$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $= \frac{\sin A \cos B + \sin B \cos A}{\cos A \cos B - \sin A \sin B}$ $\neq \exp \text{ansions}$ $\checkmark \text{ expansions}$ $\checkmark \text{ C}$ $\checkmark - \tan(A+B)$ $\checkmark \text{ substitution into formula}$ $\checkmark \text{ multiplication}$
$= \frac{\cos A \cos B - \sin A \sin B}{\cos A \cos B - \sin A \sin B}$ $= \frac{\sin(A+B)}{\cos(A+B)}$ $= \tan(A+B)$ $= LHS$ $10.2 \tan C = \tan(180^\circ - (A+B))$ $\tan C = -\tan(A+B)$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $= \frac{\cot A \cos B - \sin A \sin B}{\cot A \cos A \cos B}$ $= \frac{\sin(A+B)}{\cos(A+B)}$ $= -\tan(A+B)$
$\sin \frac{\sin (A+B)}{\cos(A+B)}$ $= \tan(A+B)$ $= LHS$ $10.2 \tan C = \tan(180^{\circ} - (A+B))$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $\cot C = -(\cot A - \cot A \cdot \cot B)$ $\cot C = -(\cot A - \cot A \cdot \cot B)$ $\cot C = -(\cot A - \cot A \cdot \cot B)$ $\cot C = -(\cot A - \cot A \cdot \cot B)$ $\cot C = -(\cot A - \cot A \cdot \cot B)$
$= \frac{\sin(A+B)}{\cos(A+B)}$ $= \tan(A+B)$ $= LHS$ $10.2 \tan C = \tan(180^{\circ} - (A+B))$ $\tan C = -\tan(A+B)$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ (3) $\checkmark C$ $\checkmark \cot(A+B)$ $\checkmark \cot(A+B)$ $\checkmark \text{ substitution into formula}$ $\checkmark \text{ multiplication with}$
$cos(A+B)$ $= tan(A+B)$ $= LHS$ $10.2 tan C = tan(180^{\circ} - (A+B))$ $tan C = -tan(A+B)$ $tan C = -\left(\frac{tan A + tan B}{1 - tan A \cdot tan B}\right)$ $tan C(1 - tan A \cdot tan B) = -(tan A + tan B)$ $\checkmark C$ $\checkmark - tan(A+B)$ $\checkmark substitution into formula$ $\checkmark multiplication with$
$= \tan(A+B)$ $= LHS$ $10.2 \tan C = \tan(180^{\circ} - (A+B))$ $\tan C = -\tan(A+B)$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $\checkmark C$ $\checkmark \cot(A+B)$ $\checkmark \text{ substitution into formula}$ $\checkmark \text{ multiplication with}$
$= LHS$ $10.2 \tan C = \tan(180^{\circ} - (A+B))$ $\tan C = -\tan(A+B)$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $\checkmark C$ $\checkmark \cot(A+B)$ $\checkmark \text{ substitution into formula}$ $\checkmark \text{ multiplication with}$
10.2 $\tan C = \tan(180^{\circ} - (A+B))$ $\tan C = -\tan(A+B)$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ \checkmark C $\checkmark - \tan(A+B)$ $\checkmark \text{ substitution into formula}$ $\checkmark \text{ multiplication with}$
$\tan C = -\tan(A+B)$ $\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $= -(\tan A + \tan B)$
$\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $-\cot A + \cot B$
$\tan C = -\left(\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}\right)$ $\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$
$\tan C(1 - \tan A \cdot \tan B) = -(\tan A + \tan B)$ $\text{multiplication with}$
I CD
ton C $ton A ton P ton C = ton A ton P$
tan C - tan A, $tan B$, $tan C - tan A - tan B$
$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C \tag{4}$
If no conclusion: 3/4
OR II no conclusion. 37 1


- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

$\hat{C} = 180^{\circ} - (\hat{A} + \hat{B})$ (angles in a triangle)	✓ C
$\tan C = \tan(180^\circ - (A+B))$	✓ rearrange angle
$\tan C = \tan((180^{\circ} - A) + (-B))$	✓ substitution into
$\tan C = \frac{\tan(180^{\circ} - A) + \tan(-B)}{1 - \tan(180^{\circ} - A) \cdot \tan(-B)}$	formula
$1 - \tan(180^{\circ} - A) \cdot \tan(-B)$	✓ expansion
$\tan C(1 - \tan(180^{\circ} - A) \cdot \tan(-B)) = \tan(180^{\circ} - A) + \tan(-B)$	(4)
$\tan C - \tan C \tan A \tan B = -\tan A - \tan B$	
$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$	

NOTE: Penalty of one for early rounding off once in this question

11.1.1	$B\hat{D}A = 208^{\circ} - 67^{\circ}$	✓ BDC = 141°
	=141°	✓ sine rule
	$\sin D\hat{B}A = \sin 141^{\circ}$	✓ sine rule ✓ substitution
	${97} = {120}$	
	$\sin D \stackrel{\wedge}{B} A = 0.5087006494$	$\checkmark \hat{B} = 30,58^{\circ}$
	$D\hat{B}A = 30,58^{\circ}$	✓ method or
	:. Bearing of Ship A from Ship B = $180^{\circ} - (360^{\circ} - 208^{\circ}) + 30,58^{\circ}$	MBD = 28° ✓ answer
	= 58,58°	(6)
	OR	
	$\widehat{BDA} = 208^{\circ} - 67^{\circ}$	✓ BÔC = 141°
	= 141°	V BDC = 141
	$\frac{\sin D\hat{B}A}{\partial z} = \frac{\sin 141^{\circ}}{120}$	
	97 120	✓ sine rule
	$\sin D\hat{B}A = 0.5087006494$	✓ substitution
	$D\hat{B}A = 30,58^{\circ}$	
	then $360^{\circ} - 208^{\circ} = N\hat{D}B$ (reflex angles)	$\checkmark N\hat{D}B = 152^{\circ}$
	$\therefore N\hat{D}B = 152^{\circ}$	
	but $M\hat{B}D + N\hat{D}B = 180^{\circ}$ (co - interior angles/ angles around a point)	
	$\therefore \hat{MBD} = 28^{\circ}$	$\checkmark M\hat{B}D = 28^{\circ}$
	then $M\hat{B}A = M\hat{B}D + D\hat{B}A$	
	$=30,58^{\circ}+28^{\circ}$	✓ answer
	= 58,58°	(6)

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

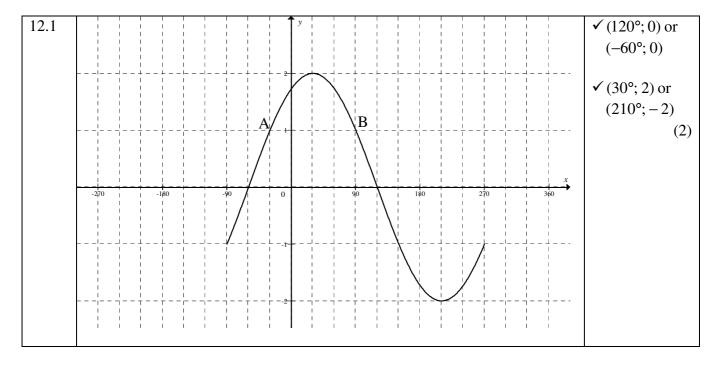
Copyright reserved

Please turn over

NSC – Memorandum

Consistent Accuracy will apply as a general rule.

Mathematics/P2


- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

	$\Delta PBQ \equiv \Delta RAQ$ (angle, angle, side)	ratios
	$\therefore BQ = QA = 60 \text{ km}$	✓ 51,20 km
	$\sin 58.58^{\circ} = \frac{PQ}{60}$	31,20 Km
	$\therefore PQ = 60 \sin 58,58^{\circ}$	
	=51,20 km	
	- 1,-0 1	✓ answer (3)
	PR = 2PQ	
	=102,4 km	
	OR	
	A	
	BM	
	$\frac{120}{120} = \cos 31,42$ /30,58° /120	
	$BM = 120 \times \cos 31,42^{\circ}$	√
	=102,4	trigonometeric
	B M	ratios
		✓ substitution
		✓ answer
		(3)
11.2	AB = BC = a = c	✓ equal sides ✓ cos rule
	$b^{2} = a^{2} + c^{2} - 2ac \times \cos B$ $b^{2} = a^{2} + a^{2} - 2a \times a \times \cos B$	Cos ruic
	$b^2 = 2a^2 - 2a^2 \cos B$	✓ substitution
	$b^2 = 2a^2(1-\cos B)$	
		√
	$\frac{b^2}{2a^2} = 1 - \cos B$	simplification
	$\cos \mathbf{B} = 1 - \frac{b^2}{2a^2}$	(4)
	$2a^2$	
	$\sin\frac{B}{2} = \frac{b}{2a}$. B
	$\cos B = 1 - 2\sin^2\frac{B}{2}$	$\sqrt{\sin\frac{B}{2}}$
	\mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L} \mathcal{L}	$\checkmark \sin \frac{B}{2} = \frac{b}{2a}$
	$=1-2\left(\frac{b}{2a}\right)^2$	2 2 <i>a</i> ✓ formula
	b^2	✓ substitution
	$=1-\frac{b^2}{2a^2} \qquad b/2 \qquad b/2$	(4) [13]
I		رحدا

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

OR $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$ $but \ a = c$ $\cos B = \frac{a^2 + a^2 - b^2}{2a \cdot a}$ $= \frac{2a^2 - b^2}{2a^2}$ $= 1 - \frac{b^2}{2a^2}$ (4) $\cos B = \frac{a^2 + a^2 - b^2}{2a \cdot a}$ $\sin \beta = \frac{a^2 + a^2 - b^2}{a^2}$

QUESTION 12

- Consistent Accuracy will apply as a general rule.
- If a candidate does a question twice and does not delete either, mark the FIRST attempt.
- If a candidate does a question, crosses it out and does not re-do it, mark the deleted attempt.

12.2	$\cos(x-30^{\circ}) = \frac{1}{2}$	√ manipulation
	$2\cos(x-30^{\circ}) = 1$ See points A and B on the graph	✓ answer
	See points A and B on the graph	(2)
	Note:	A and B in the correct place on the graph: full marks
	If drawn the line $y = \frac{1}{2}$ and put A and B on the graph: $0/2$	0.1 0.10 g. up 10.1
	If A and B on the x-axis: 1/2	
	If $A = -30^{\circ}$ and $B = 90^{\circ}$: $1/2$	
12.3	$\cos(x - 30^\circ) = 0.5$	✓ 60° (ref angle)
	$x-30^{\circ} = 60^{\circ}$ OR $x-30^{\circ} = -60^{\circ}$ $x = -30^{\circ}$	✓ 90°
	$x = 90^{\circ}$ $x = -30^{\circ}$	✓ – 30°
	n yo n co	(3)
		Answer only: 3/3
12.4	g'(x) = 0 is at maximum and minimum values of graph	✓ ✓ one for each x -value
	$x = 30^{\circ}; 210^{\circ}$	(2)
12.5	$x \in [-90^{\circ}; -60^{\circ}) \cup (120^{\circ}; 270^{\circ}]$	✓ notation
		✓✓ critical values
	OR	(3)
	$-90^{\circ} \le x < -60^{\circ}$ or $120^{\circ} < x \le 270^{\circ}$	
	OR	[12]
	If $x < -60^{\circ} \text{ or } x > 120^{\circ}$ 2/3	