

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL

 SENIOR CERTIFICATE
GRADE 12

_NOTE: Continued Accuracy applies as a rule throughout the memorandum

QUESTION 4

4.1.1 11 students

4.1.2 Let N represent students reading the National Geographic magazine, G represent students reading the Getaway magazine and L represent students reading the Leadership magazine.

No mark for $x=5$ as it is already given

4.1.4 $\mathrm{P}($ student reads at least two magazines $)=\frac{5+14+10+9}{80}=0,475$

If candidate given in fraction form or rounding incorrect 2 out of 3
4.2.1

P(smoke detected by device A or device B)
$=\mathrm{P}($ smoke detected by A) $+\mathrm{P}($ smoke detected by B) $-\mathrm{P}($ smoke detected by both $)$
$=0,95+0,98-0,94$
$=0,99$
4.2.2 $\quad \mathrm{P}($ smoke not detected $)=1-0,99=0,01$
$\checkmark 21-x+x+14$
$-x+9+14+10$
$+6+11$
$\checkmark=80$
\checkmark simplification
(3)
\checkmark answer
(1)
$\checkmark 6$
$\checkmark 9$
$\checkmark 21-x$
$\checkmark 14-x$
\checkmark all other values in Venn Diagram correct
(5)

Continuous Accuracy
applies here
\checkmark numerator
\checkmark divide by 80
\checkmark answer
\checkmark formula
\checkmark substitution of probabilities
\checkmark answer
(3)
\checkmark answer
(1)
[16]

QUES	STION 5	
5.1.1	The number of different meal combinations $=3 \times 4 \times 2=24$.	\checkmark multiplication rule \checkmark answer
5.1.2	The number of different meal combinations that have chicken as main course $=3 \times 2 \times 2=12$	\checkmark multiplication rule using 2 in the main course \checkmark answer
5.2.1	Any learner seated in any position in:$\begin{aligned} 6! & =6 \times 5 \times 4 \times 3 \times 2 \times 1 \\ & =720 \text { different ways } . \end{aligned}$	$\checkmark 6$! / multiplication rule \checkmark answer
		If just write 6!, full marks
5.2.2	$2 \times 5!=240$ OR	\checkmark multiplication rule-2 learners
		\checkmark multiplication rule - 5 objects
	These 2 particular learners could be seated in 2 different ways. Now consider them to be a single group. This group and the four remaining learners will yield 5 objects which results in $5!=120$ different seating arrangements. Therefore the group of learners with these two particular learners seated together could be seated in $2 \times 120=240$ different ways.	\checkmark answer
		If just write 2×5 !, full marks
		NOTE:
		Answer only in 5.1.1, 5.1.2 and 5.2.1 is full marks

QUESTION 6

$6.1 \& 6.3$

$\checkmark \checkmark \checkmark$ plotting points
$1-3$ wrong $2 / 3$
4-6 wrong $1 / 3$
$7-9$ wrong $0 / 3$
$\checkmark \checkmark$ line of least squares (6.3)
(2)
6.2 By using a calculator : $a=29,22 \quad$ (29.21542 \ldots)

$$
b=0,89 \quad(0,886530 \ldots)
$$

\therefore equation of line of least squares is $y=29,22+0,89 x$

NOTE: \quad According to the National Curriculum Statement the solutions to data-handling problems should be done with the use of a calculator. The alternative to the calculator is to use the pen and paper method as indicated below.

ALTERNATIVE

	x	y	$(x-$ $\bar{x})$	$(y-\bar{y})$	$(x-\bar{x})(y-\bar{y})$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$
	16	45	$-14,1$	$-10,9$	153,69	198,81	118,81
	36	70	5,9	14,1	83,19	34,81	198,81
	20	44	-				
10,1	$-11,9$	120,19	102,01	141,61			
	38	56	7,9	0,1	0,79	62,41	0,01
	40	60	9,9	4,1	40,59	98,01	16,81
	30	48	$-0,1$	$-7,9$	0,79	0,01	62,41
	35	75	4,9	19,1	93,59	24,01	364,81
	22	60	$-8,1$	4,1	$-33,21$	65,61	16,81
	40	63	9,9	7,1	70,29	98,01	50,41
	24	38	$-6,1$	$-17,9$	109,19	37,21	320,41
Sum	301	559	0	0	639,1	720,9	1290,9
Mean	30,1	55,9					

\checkmark using the table
\checkmark calculating the value of b
If incorrect table but correct substitution into formula 1 / 2
\checkmark value of a

Consider the equation of the least squares line to be $\hat{y}=a+b x$
$b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}=\frac{639,1}{720,9}=0,89$
$(0,88653)$

Using $\hat{y}=a+b x$ and \bar{x} and \bar{y},
$55,9=a+(0,88653)(30,1)$
$a=29,22$
$(29,21542516)$
Therefore equation of line of least squares is $y=29,22+0,89 x$
Also accept $y=29+x$
6.4

$$
\begin{aligned}
y & =29,22+(0,89)(22) \\
& =48,8
\end{aligned}
$$

Therefore the employee who undergoes 22 hours of training should produce about 49 units.
$6.5 \quad r=0,66$
OR
$s_{y}=\sqrt{\frac{\sum(y-\bar{y})^{2}}{n}}=\sqrt{\frac{1290,9}{10}}=11,36$
$s_{x}=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}=\sqrt{\frac{720,9}{10}}=8,49$
Using $b=r \frac{s_{y}}{s_{x}}$, we have $0,89=r \frac{11,36}{8,49}$
$r=0,66$
6.6 Not a strong relationship because r is much less than 1 Positive correlation
I would suggest that the manager look at the training programme and possibly revise it to meet the demands of the job.

There is a positive correlation between the hours of training and productivity levels. However, the value of r does not indicate a very strong relationship between hours of training and productivity levels. I would suggest that the manager look at the training programme and possibly revise it to meet the demands of the job.

\checkmark equation
\checkmark substituting 22
\checkmark answer
$\checkmark \checkmark \checkmark$ answer
$\checkmark s_{y}$
$\checkmark s_{x}$
\checkmark answer
\checkmark not very strong or NO
\checkmark advice to manager
\checkmark substituting 22

QUESTION 7

7.1.1 equal to twice the angle subtended by the same chord at the circle.

$$
\begin{align*}
& \checkmark \text { answer } \tag{1}\\
& \checkmark \text { answer } \tag{1}\\
& \checkmark \text { answer } \tag{1}\\
& \\
& \\
& \\
& \\
& \\
& \checkmark \text { statement \& reason } \\
& \checkmark \text { statement }
\end{align*}
$$

(2)
\checkmark statement $\hat{C}=100^{\circ}$
\checkmark statement $\hat{\mathrm{A}}=80^{\circ}$
(1)
\checkmark statement $\hat{\mathrm{O}}_{1}=160^{\circ}$
\checkmark reason
$\checkmark \hat{D}_{3}=10^{\circ}$
$\checkmark \hat{\mathrm{O}}_{1}=160^{\circ}$

QUESTION 8

8.1 $\hat{\mathrm{Q}}_{3}=\hat{\mathrm{R}}_{1}=\hat{\mathrm{R}}_{2}=x \ldots($ ext angle of cyclic quad...) and
(RA bisects \hat{R})
$\hat{\mathrm{R}}_{2}=\hat{\mathrm{Q}}_{2}=x \quad \ldots($ angles in the same segment)
Now $\hat{\mathrm{Q}}_{2}=\hat{\mathrm{Q}}_{3}$

OR

$\hat{\mathrm{Q}}_{2}+\hat{\mathrm{Q}}_{3}=\hat{\mathrm{R}}_{1}+\hat{\mathrm{R}}_{2} \quad$ (ext angle of cyclic quad.)
but $\hat{\mathrm{Q}}_{2}=\hat{\mathrm{R}}_{2}=\hat{\mathrm{R}}_{1} \quad$ (angles in same segment, RA bisect...)
$\therefore \hat{\mathrm{Q}}_{3}=\hat{\mathrm{Q}}_{2}$
OR
$\hat{\mathrm{Q}}_{2}+\hat{\mathrm{Q}}_{2}=\hat{\mathrm{R}}_{1}+\hat{\mathrm{R}}_{2} \quad$ (ext angle cyclic quad.) but $\hat{\mathrm{Q}}_{2}=\hat{\mathrm{R}}_{2} \quad$ (angles in same segment)
$\Rightarrow \hat{\mathrm{Q}}_{3}=\hat{\mathrm{R}}_{1}$
but $\hat{\mathrm{R}}_{1}=\hat{\mathrm{R}}_{2}=\hat{\mathrm{Q}}_{1} \quad$ (given)
$\Rightarrow \hat{\mathrm{Q}}_{3}=\hat{\mathrm{Q}}_{2}$
$\therefore \mathrm{AQ}$ bisects PQ̂B
8.2 $\hat{\mathrm{Q}}_{3}=\hat{\mathrm{B}}=x \quad \ldots$ (angles opp equal sides, $\mathrm{AQ}=\mathrm{AB}$)
$\hat{\mathrm{R}}_{1}=\hat{\mathrm{B}}=x \ldots \quad$ (from 8.1)
$\therefore \mathrm{TR}=\mathrm{TB} \ldots \ldots$. (sides opp equal angles)
$\checkmark \hat{\mathrm{R}}_{1}=\hat{\mathrm{R}}_{2}$
\checkmark reason
$\checkmark \hat{\mathrm{R}}_{2}=\hat{\mathrm{Q}}_{2}=x$
If no valid conclusion
2/3
(3)

Follow
candidates'
argument.
To get full marks candidate must reach a valid conclusion

8.3 $\begin{array}{ll} \hat{\mathrm{P}}=\hat{\mathrm{A}}_{1} & (\angle \text { in same segment }) \\ \hat{\mathrm{A}}_{1}=\hat{\mathrm{Q}}_{3}+\hat{\mathrm{B}} & (\text { ext } \angle \text { of } \triangle \mathrm{ABC}=\text { sum into opp } \angle \prime \mathrm{s}) \\ \hat{\mathrm{Q}}_{3}+\hat{\mathrm{B}}=2 \hat{\mathrm{Q}}_{3} & \left(\hat{\mathrm{Q}}_{3}=\hat{\mathrm{B}} \angle \prime \text { 's opp equal sides }\right) \\ 2 \hat{\mathrm{Q}}_{3}=2 \hat{\mathrm{R}}_{1} & \text { (from } 8.1) \\ 2 \hat{\mathrm{R}}_{1}=\mathrm{P} \hat{\mathrm{R}} \mathrm{~T} & \text { (given }) \end{array}$ OR $\mathrm{T} \hat{\mathrm{R}}=2 x \quad \ldots \ldots . .($ from above $)$ $\hat{\mathrm{A}}_{1}=\hat{\mathrm{Q}}_{3}+\hat{\mathrm{B}}=2 x \ldots \ldots$ (exterior angle of triangle) And $\hat{\mathrm{P}}=\hat{\mathrm{A}}_{1}=2 x \quad \ldots$. (angles in the same segment) $=\mathrm{TR} \mathrm{P}$	$\begin{aligned} & \checkmark \hat{\mathrm{P}}=\hat{\mathrm{A}}_{1}=2 x \\ & \checkmark \hat{\mathrm{~A}}_{1}=\hat{\mathrm{Q}}_{3}+\hat{\mathrm{B}}=2 x \\ & \checkmark \hat{\mathrm{Q}}_{3}=2 \hat{\mathrm{R}}_{1} \\ & \\ & \checkmark \hat{\mathrm{R}}_{1}+\hat{\mathrm{R}}_{2}=2 x \\ & \checkmark \hat{\mathrm{~A}}_{1}=\hat{\mathrm{Q}}_{3}+\hat{\mathrm{B}}=2 x \\ & \checkmark \hat{\mathrm{P}}=\hat{\mathrm{A}}_{1}=2 x \end{aligned}$

QUESTION 9

$9.1 \hat{\mathrm{R}}_{1}=90^{\circ} \ldots($ angle in a semi-circle $)$
9.2 $\quad \hat{\mathrm{P}}_{2}=90^{\circ}-x \quad \ldots($ angle between radius and tangent)
$\hat{\mathrm{S}}=90^{\circ}-\hat{\mathrm{P}}_{2} \ldots($ ext. angle of Triangle)(sum of angles of triangle)
$=90^{\circ}-\left(90^{\circ}-x\right)=x$
$\therefore \hat{\mathrm{P}}_{1}=\hat{\mathrm{S}}=x$
$9.3 \hat{\mathrm{~W}}_{2}=\hat{\mathrm{P}}_{1}=x \ldots($ angles in the same segment $)$
Also $\hat{\mathrm{S}}=x \quad \ldots$ (proved 9.2)
$\hat{W}_{2}=\hat{\mathrm{S}}$
\therefore SRWT is a cyclic quad...(ext angle $=$ int. opposite angle $)$
9.4 In Δ QWR ; Δ QST
$\hat{\mathrm{W}}_{2}=\hat{\mathrm{S}} \ldots .($ proved 9.3)
$\hat{\mathrm{Q}}_{1}$ is common
$\mathrm{W} \hat{\mathrm{R}} \mathrm{Q}=\hat{\mathrm{T}}_{2} \quad \ldots$ (remaining angles)
$\Delta \mathrm{QWR}\|\| \Delta \mathrm{QST}$ (AAA) or ($\angle \angle \angle$) or equiangular
\checkmark angle in a
semi-circle
$\checkmark \hat{\mathrm{P}}_{2}=90^{\circ}-x$
$\checkmark \hat{\mathrm{S}}=90^{\circ}-\hat{\mathrm{P}_{2}}$
$\checkmark 90^{\circ}-\left(90^{\circ}-x\right)=x$
$\checkmark \mathrm{Q} \hat{\mathrm{WR}}=\hat{\mathrm{P}}_{1}=x$
$\checkmark \mathrm{Q} \hat{W} R=\hat{\mathrm{S}}$
\checkmark reason
$\checkmark \mathrm{Q} \hat{\mathrm{W} R}=\mathrm{Q} \hat{\mathrm{S}} \mathrm{T}$
$\checkmark \mathrm{R} \hat{\mathrm{Q} W}$ is common
\checkmark AAA or $\angle \angle \angle$ or equiangular or $3^{\text {rd }}$ angle equal

9.5 .1	$\frac{\mathrm{TS}}{\mathrm{RW}}=\frac{\mathrm{QT}}{\mathrm{QR}} \quad \ldots . . \Delta \mathrm{QWR} \\| \mid \Delta \mathrm{QST}$
	$\therefore \frac{\mathrm{TS}}{2}=\frac{8}{4}$
	$4 \mathrm{TS}=16$
	$\therefore \mathrm{TS}=4 \mathrm{~cm}$
9.5 .2	$\checkmark \frac{\mathrm{TS}}{\mathrm{RW}}=\frac{\mathrm{QT}}{\mathrm{QR}}$
	$\frac{\mathrm{SQ}}{\mathrm{WQ}}=\frac{\mathrm{TS}}{\mathrm{RW}}$
	$\checkmark \frac{\mathrm{TS}}{2}=\frac{8}{4}$
$\mathrm{SQ}=\frac{4 \times 5}{2}=10 \mathrm{~cm}$	
$\therefore \mathrm{SR}=\mathrm{SQ}-\mathrm{RQ}$	$\checkmark \frac{\mathrm{SQ}}{\mathrm{WQ}}=\frac{\mathrm{TS}}{\mathrm{RW}}$
$=6 \mathrm{~cm}$	$\checkmark 10 \mathrm{~cm}$

10.4.1	$\frac{\Delta \mathrm{ADC}}{\Delta \mathrm{ABD}}=\frac{3}{2}$	\checkmark answer	(1)
10.4.2	$\Delta \mathrm{TEC} \quad \triangle \mathrm{TEC} \quad \Delta \mathrm{TBC}$	\checkmark ratios	
	$\begin{aligned} \overline{\Delta \mathrm{ABC}} & =\frac{\overline{\mathrm{TBC}}}{} \times \overline{\Delta \mathrm{ABC}} \\ & =\left(\frac{1}{5}\right)\left(\frac{1}{3}\right) \end{aligned}$	\checkmark substitution	
	$=\frac{1}{15}$	\checkmark answer	(3)
	OR		
	$\frac{\operatorname{area} \triangle \mathrm{TEC}}{\operatorname{area} \triangle \mathrm{ABC}}=\frac{\frac{1}{2} \cdot \mathrm{TC} \cdot \mathrm{EC} \cdot \sin \hat{\mathrm{C}}}{\frac{1}{2} \cdot \mathrm{AC} \cdot \mathrm{BC} \cdot \sin \hat{\mathrm{C}}}$	\checkmark ratios	
	$=\frac{\mathrm{TC} \cdot \mathrm{EC}}{\mathrm{AC} \cdot \mathrm{BC}}$	\checkmark substitution	
	$=\left(\frac{1}{5}\right)\left(\frac{1}{3}\right)$	\checkmark answer	(3)
	$=\frac{1}{15}$	Answer Only : 3/3	
			[9]

