MATHEMATICS: PAPER III

MARKING GUIDELINES

Time: 2 hours

100 marks

These marking guidelines were used as the basis for the official IEB marking session. They were prepared for use by examiners and sub-examiners, all of whom were required to attend a rigorous standardisation meeting to ensure that the guidelines were consistently and fairly interpreted and applied in the marking of candidates' scripts.

At standardisation meetings, decisions are taken regarding the allocation of marks in the interests of fairness to all candidates in the context of an entirely summative assessment.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines, and different interpretations of the application thereof. Hence, the specific mark allocations have been omitted.

Please note that learners who provided alternate correct responses to those given in the marking guidelines will have been given full credit.

SECTION A

QUESTION 1 [LO 1: AS 12.1.3]

(a) $T_{k+1}=T_{k}+6 ; \quad T_{1}=8$
(b) $\quad T_{3}=a T_{2}+b T_{1}=a(2)+b(1)=5$

$$
T_{4}=a T_{3}+b T_{2}=a(5)+b(2)=12
$$

$$
\therefore 2 a+b=5
$$

$$
b=5-2 a
$$

$$
\text { and } 5+2(5-2 a)=12
$$

$$
5 a-4 a=12-10
$$

$$
a=2
$$

$$
\therefore b=5-2(2)
$$

$$
\begin{equation*}
b=1 \tag{6}
\end{equation*}
$$

8 marks

QUESTION 2

[LO 4: AS 11.4.2; 12.4.2]

(a) $P(R, R, R)=\frac{26}{52} \times \frac{25}{51} \times \frac{24}{50}=\frac{2}{17}$

$$
\begin{align*}
P(B, B, B) & =\frac{2}{17} \\
\therefore & P \text { (all are same colour) }=\frac{4}{17} \text { or } 0,24 \tag{5}
\end{align*}
$$

(b) (1) If mutually exclusive $P(A \cap B)=0 \therefore$

$$
\begin{equation*}
P(A \cap B)=\frac{3}{8}+\frac{1}{4}=\frac{5}{8} \tag{2}
\end{equation*}
$$

(2) If independent $P(A \cap B)=P(A) P(B)=\frac{3}{8} \times \frac{1}{4}=\frac{3}{32}$

$$
\begin{align*}
\therefore P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
& =\frac{3}{8}+\frac{1}{4}-\frac{3}{32} \\
& =\frac{17}{32} \tag{5}
\end{align*}
$$

(c) (1) $6!=720$
(2) $\bigodot----5!2!=240$
$\therefore P($ sitting together $)=\frac{240}{720}=\frac{1}{3}$

QUESTION 3 [LO 4: AS 12.4.1]

(a) $\quad A=169,83 \quad \therefore y=-0,93 x+169,83$
$B=-0,93$
(b) $\quad \hat{y}=-0,93(33)+169,83$
$\hat{y}=139,14=139 \mathrm{~m}$
(c) $\quad r=-0,95 \quad[r=-0,9496957731]$
(d) 5
(e) $\quad-0,93 \times 15=-13,95$ or $y_{33}-y_{18}$

$$
=139,14-153,09
$$

$$
\begin{equation*}
=-13,95 \mathrm{~m} \tag{3}
\end{equation*}
$$

12 marks

QUESTION 4

[LO 4: AS 12.4.3]
(a) $\bar{x}=59,66$
\therefore they are incorrect
Median $=48$ th score $=$ in category $55-59$
\therefore they are incorrect
(b) 8,2
(c) \quad (1) $\quad Q_{3}$ read at $\frac{3}{4} \times 96=72 \quad \therefore(64 ; 72)$

Q1 read at $\frac{1}{4} \times 96=24 \quad \therefore(54 ; 24)$
\therefore interquartile range $=10$
(2) Range $=84-40=44$

Middle 50% occurs in interquartile range of 10 . Data clustered in middle categories, spread at extremes.

$$
\begin{equation*}
14 \text { marks } \tag{2}
\end{equation*}
$$

QUESTION 5 [LO 4: AS 12.4.4]

(a) B
(b) A
(c) C

QUESTION 6 [LO 1: AS 12.4.1 and 11.4.3]

(a) We have no idea how many people were in the trial - might be only $1 \% / 10 \%$, etc. as a success rate.
(b) Can't conclude this - have no idea of age of people tested. Big feet could mean older people which could mean higher numeracy.

SECTION B

QUESTION 7
(a) $\frac{A R}{A B}=\frac{5}{7}$

$$
\therefore \frac{A R}{R B}=\frac{5}{2}
$$

$$
\therefore \frac{A S}{S P}=\frac{5}{2}
$$

$$
\begin{equation*}
\therefore \frac{A S}{S C}=\frac{5}{9} \tag{3}
\end{equation*}
$$

(b) $\frac{R T}{R C}=\frac{2}{9}$
$\frac{R T}{20}=\frac{2}{9}$
$R T=\frac{40}{9}$
$R T=4,4 \mathrm{~cm}$

QUESTION 8 [LO 3: AS 12.3.2]

(a) $\hat{P}=20^{\circ}$
$\hat{Q}=20^{\circ}$
$\hat{Q}_{2}=40^{\circ}$
(b) $\quad \hat{P}_{2}=90^{\circ} \quad$ (L semi circle)
$\hat{S}_{2}=110^{\circ} \quad$ (ext L cyclic quad)

QUESTION 9 [LO 3: AS 11.3.2]

(a) $\quad \hat{T}_{1}=\hat{T}_{4}=x \quad$ vert opp
$\hat{S}_{1}+\hat{S}_{2}=\hat{T}_{1}=x \quad$ Isos Δ
$\hat{M}_{3}=\hat{T}_{4}=x \quad$ tan chord
(b) $\quad R \hat{S} T=\hat{S}_{1}+\hat{S}_{2}=x$ proven
$\hat{M}_{3}=x$
$R \hat{S} T=\hat{M}_{3}$
(c) $\quad R \hat{S} T=\hat{M}_{3} \quad$ proved
$\therefore R S T M$ is cyclic quad (ext $\mathrm{L}=\mathrm{int}$ opp L)

QUESTION 10 [LO 3: AS 12.3.2]

(a) $\quad \hat{T}_{1}+\hat{T}_{2}=\hat{B}=180^{\circ}$ opp Ls cyclic quad ATSB
$\hat{B}+\hat{D}_{1}=180^{\circ} \quad$ opp Ls cyclic quad $A D C B$
$\therefore \hat{T}_{1}+\hat{T}_{2}=\hat{D}_{1}$
But $\hat{D}_{1}=\hat{D}_{4} \quad$ vert opp
$\therefore \hat{T}_{1}+\hat{T}_{2}=\hat{D}_{4}$
(b) In $\triangle S T D$ and $\triangle S A T$
\hat{S}_{1} common
$\hat{D}_{4}=\hat{T}_{1}+\hat{T}_{2} \quad$ proved above
$\therefore \hat{T}_{2}=\hat{A}_{1}$
$\therefore \Delta S T D / / / \Delta S A T \quad(A A A)$
(c) $\quad \frac{S T}{S A}=\frac{S D}{S T} \quad$ (equiangular $\Delta \mathrm{s}$)
$S T^{2}=S D . S A$
But $\triangle S D C / / / \triangle S B A$
$\therefore \frac{S D}{B S}=\frac{C S}{A S}$
$\therefore S D . S A=B S . C S$
$\therefore S T^{2}=B S . C S$

QUESTION 11 [LO 3: AS 11.3.2]

(a) $B C^{2}=8^{2}-(4,8)^{2}$

$$
B C^{2}=40,95
$$

$$
\begin{equation*}
B C=6,4 \tag{2}
\end{equation*}
$$

(b) $\triangle B E D / / / \triangle B A C$
(c) Area $\triangle A B C=\frac{1}{2}(4,8)(6,4)=15,36$

For Area $\triangle B E D$ need $E D$:
But $\frac{B O}{B C}=\frac{E D}{A C}($ similar $\Delta \mathrm{s})$
$\therefore \frac{E D}{4,8}=\frac{4}{6,4}$
$\therefore E D=3$
So Area $\triangle B E D=\frac{1}{2}(3)(4)=6$
\therefore Area $A D E C=15,36-6$

$$
\begin{equation*}
=\underline{9,36 \mathrm{~cm}^{2}} \tag{5}
\end{equation*}
$$

8 marks

Total: 100 marks

